
Elliptic Curve Processor Architecture To Design Unified Montgomery Multiplier …D. Prasadh et al.,

14

International Journal of Computer Network and Security(IJCNS)
Vol 7. No.1 2015 Pp. 14-24

©gopalax Journals, Singapore
available at : www.ijcns.com

ISSN: 0975-8283

--

ELLIPTIC CURVE PROCESSOR ARCHITECTURE TO DESIGN UNIFIED MONTGOMERY

MULTIPLIER ARCHITECTURE FOR GF (p), GF (2
m

) AND GF (3
m

)

D. Prasadh1 and M. Muthulakshmi2

1,2Assistant Professor, Dept of Computer Science, SSBSTAS College, Tamilnadu.
1prasadh2000@gmail.com, 2mlaxmi0305@gmail.com

ABSTRACT

This work introduces new modulus scaling techniques for transforming a class of primes into

special forms which enable efficient arithmetic. The scaling technique may be used to improve

multiplication and inversion infinite fields. We present an efficient inversion algorithm that utilizes the

structure of a scaled modulus. Our inversion algorithm exhibits superior performance to the Euclidean

algorithm and lends itself to efficient hardware implementation due to its simplicity. Using the scaled

modulus technique and our specialized inversion algorithm we develop elliptic curve processor

architecture. The resulting architecture successfully utilizes redundant representation of elements in

GF(p) and provides a low-power, high speed, and small footprint specialized elliptic curve

implementation. We also introduce a unified Montgomery multiplier architecture working on the

extension fields GF(p), GF(2
m

) and GF(3
m

). With the increasing research activity for identity based

encryption schemes, there has been an increasing need for arithmetic operations in field GF(3
m

). Since

we based our research on low-power and small footprint applications, we designed a unified

architecture rather than having a separate hardware for GF3
m

.

Keywords: network security, cryptography, decryption, encryption
--

1. INTRODUCTION

1.1 Motivation
The incredible improvements in ubiquitous
computing, and its indispensable implications
gives rise to its being an effective domain of
interest. As the notion of ubiquitous computing is
becoming more and more part of our lives, various
applications consisting of this new technology can
be encountered. RFIDs are currently being
introduced into the supply chain. Wireless sensor
networks are widely used for many applications. In
some cities most of the people carry at least one
contact less smart card in their pockets. These
applications are becoming widespread, with an
ultimate need of security. Currently, RFID

applications have no security at all. Moreover,
these applications have limited power resources,
which make them ultra-low power devices. Power
efficient implementations need to be used. Security
applications are a part of the implementations, so
they also have to be power-efficient. So far, public
key cryptography has not even been considered for
these devices due to its perceived complexity.

The common perception of public key
cryptography is that it is complex, slow and power
hungry, and as such not at all suitable for use in
these environments. It is therefore common
practice to emulate the asymmetry of traditional
[1] public key based cryptographic services
through a set of protocols using symmetric key

http://www.ijcns.com/

Elliptic Curve Processor Architecture To Design Unified Montgomery Multiplier …D. Prasadh et al.,

15

based message authentication codes (MACs).
Although the low computational complexity of
MACs is advantageous, the protocol layer requires
time synchronization between devices on the
network and a significant amount of overhead for
communication and temporary storage.
The requirement for a general purpose CPU to
implement these protocols as well as their
complexity makes them prone to vulnerabilities
and practically eliminates all the advantages of
using symmetric key techniques in the first place.
Our aim is to challenge the basic assumptions
about public key cryptography which are based on
a traditional software based approach. We propose
a custom hardware assisted approach for which we
claim that it makes public key cryptography
feasible for low-power applications, provided we
use the right selection of algorithms and associated
parameters, careful optimization, and low-power
design techniques. Several public key schemes can
be used to provide the security services described
above. [2] We take a closer look at Elliptic Curve
Cryptosystems (ECC) as the most promising
candidate for low-power implementations. [3] We
implemented the hardware design of low-power
and novel ECC architecture.

After a short introduction into the motivation of
the work done in this thesis and a brief
introduction to the modular arithmetic in Section
1, Section 2 will present some of the earlier works
in the field. The concepts that we used in our
research will be analyzed for useful ideas.
Following that, modulus scaling techniques can be
used for the background research. Also in this
Section, the inversion algorithm that was achieved
by modulus scaling techniques will be described
and analyzed for hardware implementation.
Section 4 presents the reader the system
architecture of the design and unified multiplier
architecture that can work for three extension
fields. First the background research is presented,
than the structure of the presented hardware is
described. The algorithms used for Montgomery
multiplication are examined in this chapter.

Finally, Section 5 concludes the paper and presents
avenues for future work.

1.2 Modular Arithmetic
Modular arithmetic has a variety of applications in
cryptography. Many public-key algorithms heavily
depend on modular arithmetic. [4]Among these,
RSA encryption and digital signature schemes,
discrete logarithm problem (DLP) based schemes
such as the [5] Diffie-Helman key agreement and
El-Gamal encryption and signature schemes, and
elliptic curve cryptography play an important role
in authentication and encryption protocols.

The implementation of RSA based schemes
requires the arithmetic of integers modulo a large
integer, that is in the form of a product of two large
primes n = p.q. On the other hand,
implementations of Diffie-Helman and El-Gamal
schemes are based on the arithmetic of integers
modulo a large prime p. While ECDSA is built on
complex algebraic structures, [6] the underlying
arithmetic operations are either modular operations
with respect to a large prime modulus (GF(p) case)
or polynomial arithmetic modulo a high degree
irreducible polynomial defined over the finite field
GF(2) (GF(2k) case). Special moduli for GF(2k)
arithmetic were also proposed. Low Hamming-
weight irreducible polynomials such as trinomials
and pentanomials became a popular choice for
both hardware and software implementations of
ECDSA over GF(2k). Particularly, trinomials of
the form xk + x + 1 allow efficient reduction. For
many bit-lengths such polynomials do not exist;
therefore less efficient trinomials, i.e. xk + xu + 1
with u > 1, or polynomials, i.e. xk + xu + xv + xz +
1, are used instead. Hence, in many cases the
performance suffers degradation due to extra
additions and alignment adjustments.

2. PREVIOUS WORK
A straightforward method to implement integer
and polynomial modular multiplications is to first
compute the product of the two operands, t = a.b,
and then to reduce the product using the modulus,
c = t mod p. Traditionally, the reduction step is

Elliptic Curve Processor Architecture To Design Unified Montgomery Multiplier …D. Prasadh et al.,

16

implemented by a division operation, which is
significantly more demanding than the initial
multiplication.[7]To alleviate the reduction
problem in integer modular multiplications,
Crandall proposed using special primes, primes of
the form p = 2k -u, where u is a small integer
constant. By using special primes, modular
reduction turns into a multiplication operation by
the small constant u, that, in many cases, may be
performed by a series of less expensive shift and
add operations. Let the number t represent the 2k-
bit result of a multiplication operation of two k-bit
numbers. Let tl represent the low k-bits and th
represent the high k-bits:

t = th2k + tl
Hence c = th2k + tl (mod p)

which can be reduced for p = 2k- u to
c = th.u + t l (mod 2k - u).

It should be noticed that th.u is not fully reduced.
Depending on the length of u, a few more
reductions are needed. The best possible choice for
a special prime is a Mersenne prime, p = 2k -1,
with k fixed to a word-boundary, i.e. k = 16,32,64.
In this case, the reduction operation becomes a
simple modular addition c = th + tl mod p.
Similarly primes of the form 2k + 1 may simplify
reduction into a modular subtraction c = tl - th mod
p. Unfortunately, Mersenne primes and primes of
the form 2k + 1 are scarce. For degrees up to 1000
no primes of form 2k + 1 exist and only the two
Mersenne primes 2521 - 1 and 2607 - 1 exist.
Moreover, these primes are too large for ECDSA
which utilizes bit-lengths in the range 160 - 350.
Hence, a more practical choice is to use primes of
the form 2k - 3. For a constant larger than u = 3,
and a degree k that is not aligned to a word
boundary, some extra shifts and additions may be
needed.

To relax the restrictions, [8] Solinas introduced a
generalization for special primes. His technique is
based on signed bit recoding. While increasing the
number of possible special primes, additional low-
level operations are needed. The special modulus
reduction technique introduced by Crandall

restricts the constant u in p = 2k- u to a small
constant that fits into a single word.

3. MODULUS SCALING TECHNIQUES

3.1 General Method
The idea of modulus scaling was

introduced by Walter. [9] In this work, the
modulus was scaled to obtain a certain
representation in the higher order bits, which
helped the estimation of the quotient in Barrett's
reduction technique. The method works by scaling
to the prime modulus to obtain a new modulus, m
= p.s. Reducing an integer a using the new
modulus m will produce a result that is congruent
to the residue obtained by reducing a modulo p.
This follows from the fact that reduction is a
repetitive subtraction of the modulus. Subtracting
m is equivalent to s times subtracting p and thus (a
mod m) mod p  a mod p : When a scaled modulus
is used, residues will be in the range [m – 1, 0] =
[s.p – 1, 0]. The number is not fully reduced and
essentially we are using a redundant representation
where an integer is represented using dlog2 se
more bits than necessary. Consequently, it will be
necessary that the final result is reduced by p to
obtain a fully reduced representation. Here we
wish to use scaling to produce moduli of special
form. If a random pattern appears in a modulus, it
will not be possible to use the low-weight
optimizations discussed in section 2.

3.2 Special Primes
We present two heuristics that form a basis for
efficient on-the-y scaling using primes of special
forms:

3.2.1 Heuristic 1
Heuristic 1 If the base B representation of an
integer contains a series of repeating digits, scaling
the integer with the largest possible digit, produces
a string of repeating zero digits in the scaled and
recoded integer. The justification of the heuristic is
quite simple. Assume the representation of the
modulus in base B contains a repeating digit of
arbitrary value D. We use the constant scaling
factor s = B - 1 to compute m. When a string of

Elliptic Curve Processor Architecture To Design Unified Montgomery Multiplier …D. Prasadh et al.,

17

repeating D-digits is multiplied with the scaling
factor, and written in base B we obtain the
following
(DDDD...DDD)B. (B - 1) = (DDDD...DDD0) B -
(DDDD...DDD) B = (D000 ... 000D)B.
The bar over the least significant digit denotes a
negative valued digit.
We provide the following example:
Example 1 we select the following prime
p =
(5123456781234567812345678123456781234567
8123456807)16.
By inspection we identify (12345678)16 as a
repeating pattern. By selecting the base B = 232,
the repeating pattern becomes a digit. The scaling
factor is the largest digit s = B - 1 = 232 - 1 =
(FFFFFFFF) 16. The scaled modulus is computed
as
m = s.p=
(5123456730000000000000000000000000000000
0000000085DCBA97F9)16
The representation may contain more than one
repeating digit. For instance, the
Prime
p = (57777777777777333333333338B) 16
has two repeating digits 7 and 3. Since both fit into
a digit in base B = 16, scaling
with B-1 = 15 will work on both strings:
m = p.s = (57777777777777333333333338B)16
.(F)16
= (51FFFFFFFFFFFFC0000000000525)16.
= (52000000000000 40000000000525)16.
The presented scaling technique is simple,
efficient, and only requires the modulus to have
repeating digits. Since the scaling factor is fixed
and only depends on the length of the repeating
pattern - not its value -, a modulus with multiple
repeating digits can be scaled properly at the cost
of increasing the length of the modulus by a single
digit. We present another heuristics for scaling,
this technique is more efficient but more restrictive
on the modulus.

3.2.2 Heuristic 2
Heuristic 2 given a modulus containing repeating
D-digits in base B representation, Heuristic 2

Given a modulus containing repeating D-digits in
base B representation, if B - 1 is divisible by the
repeating digit, then the modulus can be efficiently
scaled by the factor B-1/D.
As earlier the heuristic is verified by multiplying a
string of repeating digits with the scaling factor
and then by recoding.
(DDD...DDD)B .B-1/D= ((B - 1) (B -1) (B - 1) ...
(B - 1))B= (1000 ... 01)B.
The following example shows the power of this
simple technique.
Example 2 Let the prime p be
p =
(D79435E50D79435D79435E50D79435E50D794
35E50D79435E50D79435E50||

D79435E50D79435E50D79435E50D7943
5E5)16
By inspection the repeating pattern is detected as D
= (0D79435E5)16. The digit D fits into 36-bits,
thus the base is selected as B = 236. Since D| (B -
1) the scaling factor is computed as

s =236 – 1/ (0D79435E5)16= 19
The scaled modulus becomes

m = s.p = 2384 - 2320 – 1
We have compiled a list of primes that when
scaled with a small factor produce moduli of the
form 2k ±1 in Table 4 (see Appendix A). These
primes provide a wide range of perfect choices for
the implementation of cryptographic schemes.

3.3 Scaled Modular Inversion
In this section we consider the application of
scaled arithmetic to implement more efficient
inversion operations. An efficient way of
calculating multiplicative inverses is to use binary
extended Euclidean based algorithms. The
Montgomery inversion algorithm proposed by
Kaliski is one of the most efficient inversion
algorithms for random primes. Montgomery
inversion, however, is not suitable when used with
scaled primes since it does not exploit our special
moduli. Furthermore, it can be used only when
Montgomery arithmetic is employed. Therefore,
what we need is an algorithm that takes advantage
of the proposed special moduli. Thomas et al

Elliptic Curve Processor Architecture To Design Unified Montgomery Multiplier …D. Prasadh et al.,

18

proposed the Algorithm X for Mersenne primes of
the form 2q – 1.

Due to its simplicity Algorithm X is likely

to yield an efficient hardware implementation.
Another advantage of Algorithm X is the fact that
the carry-free arithmetic can be employed. The
main problem with other binary extended
Euclidean algorithms is that they usually have a
step involving comparison of two integers. The
comparison in Algorithm X is much simpler and
may be implemented easily using carry-free
arithmetic. The algorithm can be modified to
support the other types of special moduli as well.
For instance, changing Step 4 of the algorithm to b
:= -(2q-eb) (mod p) will make the algorithm work
for special moduli of the form 2q + 1 with almost
no penalty in the implementation. The only
problem with a special modulus, m is the fact that
it is not prime (but multiple of a prime, m = sp)
and therefore inverse of an integer a < m does not
exist when gcd(a,m) ≠ 1. With a small
modification to the algorithm this problem may be
solved as well. Without loss of generalization the
solution is easier when s is a small prime number.
Algorithm X normally terminates when y = 1 for
integers that are relatively prime to the modulus,
m. When the integer a is not relatively prime to the
modulus, then Algorithm X must terminate when y
= gcd(a,m) = s resulting b = a-1.s (mod m). In order
to obtain the inverse of a when gcd(a,m) ≠ 1, an
extra multiplication at the end is necessary:

b = b. (s-1 (mod p)) (mod m)

where s-1 (mod p) needs to be precomputed. This
precomputation and the task of checking y = s as
well as y = 1, on the other hand, may be avoided
utilizing the following technique. The integer a,
whose inverse is to be computed, is first multiplied
by the scale s before the inverse computation: a’ =
a. s :

When the inverse computation is
completed we have the following equality

a’. b + m. k = s
and thus

a.s.b + p.s.k = s

When both sides of the equation is divided by s we
obtain

a.b + p.k = 1
Therefore, the algorithm automatically yields the
inverse of a as b = a-1 if the input is taken as s.a
mod m instead of a. Although this technique
necessitates an extra multiplication before the
inversion operation independent of whether a is
relatively prime to modulus m or not, eliminating
the precomputation and a comparison is a
significant improvement in a possible hardware
implementation. Furthermore, this multiplication
will reduce to several additions when the scale is a
small integer such as the s = 3 in p = (2167 + 1)/3.
Another useful modification to Algorithm X is to
transform it into a division algorithm to compute
operations of the form d/a.

The only change required is to initialize b with d
instead of 1 in Step 1 of the algorithm. [10] This
simple modification saves one multiplication in
elliptic curve operations. The Algorithm X
modified for division with scaled modulus is
shown below:
Algorithm X - modified for division with scaled
modulus
Input: a є [1,m - 1], d є [1,m - 1], m, and q where
m = 2q ±1
Output:b є [1;m - 1], where b = d/a (mod m)

1: a := a . s (mod m);
2: (b, c, u, v) := (d, 0, a,m);
3: Find e such that 2e||u
4: u := u/2e; // shift of trailing zeros
5: b := ╤(2q-eb) (mod m); // circular left

shift
6: if u = s return b;
7: (b,c,u,v) := (b + c,b,u + v,u);
8: go to Step 3

It should be noted that the notation 2e||u stands for
the largest integer value of e such that 2e exactly
divides u. One can easily observe that the
Algorithm X has the loop invariant b/u (mod m) 
d/a (mod m). Note that the Step 3 of Algorithm X
can be performed using simple circular left shift
operations. The advantage of performing the Step

Elliptic Curve Processor Architecture To Design Unified Montgomery Multiplier …D. Prasadh et al.,

19

3 with simple circular shifts may disappear for
moduli of the form 2q-c with even a small c. Many
inversion algorithms consist of a big loop and the
efficiency of an inversion algorithm

Figure: 1 Distribution of k

Depends on the number of iterations in this loop, k
,which, in turn, determines the total number of
additions, shift operations to be performed. The
numbers of iterations are usually of random nature
(but demonstrate a regular and familiar
distribution) and only statistical analysis can be
given. In order to show that Algorithm X is also
efficient in terms of iteration number, we
compared its distribution for k against that of
Montgomery inversion algorithm. We computed
the inverses of 10000 randomly chosen integers
modulo m = 2167 + 1 using Algorithm X. Since p =
m/3 is a 166-bit prime we repeated the same
experiment with the Montgomery inversion
algorithm using p. Besides having much easier
operations in each iteration we observed that the
average number of iterations of Algorithm X is
slightly lower than the total number of iterations of
the Montgomery inversion algorithm (Figure 1).

4. THE ELLIPTIC CURVE ARCHITECTURE
We developed an elliptic curve architecture using
the scaled modulus technique and our specialized
inversion algorithm [11]. Our aim in implementing

this hardware was to actually see the outcomes of
our techniques.

4.1 Design Methodology
We built our elliptic curve scheme over the prime
field GF((2167+1)/3). [12]This particular prime
allows us to use a scaled modulus m = 2167 + 1
with a very small scaling factor s = 3. To
implement the field operations we use Algorithm
X as outlined in section 3.3. Our simulation for
this particular choice of prime showed that our
inversion technique is only by about three times
slower than a multiplication operation.
Furthermore, the inversion is implemented as a
division saving one multiplication operation.

Thus the actual ratio is closer to two. Since
inversion is relatively fast, we prefer to use affine
coordinates. Besides faster implementation, affine
coordinates provides a significant amount of
reduction in power and circuit area since projective
coordinates requires a large amount of extra
storage. For an elliptic curve of form y2 = x3 + ax +
b defined over GF(2167 + 1)/3) we use the standard
point addition operation. For power efficiency we
optimize our design to include minimal hardware.
An effiective strategy in reducing the power
consumption is to spread the computation to a
longer time interval via serialization which we
employ extensively. On the other hand, a
reasonable time performance is also desired.

Since the elliptic curve is defined over a large
integer field GF(p) (168-bits) carry propagations
are critical in the performance of the overall
architecture. To this end, we built the entire
arithmetic architecture using the carry-save
methodology. This design choice regulates all
carry propagations and delivers a very short
critical path delay, and thus a very high limit for
the operating frequency. The redundant
representation doubles all registers in the
arithmetic unit, i.e. we need two separate registers
to hold both the carry part and the sum part of a
number. Furthermore, the inherent difficulty in
comparing numbers represented in carry-save

Elliptic Curve Processor Architecture To Design Unified Montgomery Multiplier …D. Prasadh et al.,

20

notation is another challenge. In addition, shifts
and rotate operations become more cumbersome.
Nevertheless, as evident from our design it is
possible to overcome these difficulties. In
developing the arithmetic architecture we
primarily focused on finding the minimal circuit to
implement Algorithm X efficiently. Since the
architecture is built around the idea of maximizing
hardware sharing among various operations, the
multiplication, squaring and addition operations
are all achieved by the same arithmetic core.

The control is hierarchically organized to
implement the basic arithmetic operations, point
addition, point doubling, and the scalar point
multiplication operation in layers of simple state
machines. The simplicity of Algorithm X and
scaled arithmetic allows us to accomplish all
operations using only a few small state machines.

4.2 Implementation of the Arithmetic Unit
The arithmetic unit is built around four main
registers R0; R1; R2; R3, and two extra registers
Rtemp0; Rtemp1 which are used for temporary
storage [13]. Note that these registers store both
the sum and carry parts due to the carry-save
representation. For the same purpose the
architecture is built around two (almost) parallel
data paths. We briey outline the implementation of
basic arithmetic operations.

4.2.1 Modulo Reduction

Since the hardware works for m = 2167 + 1, 168-bit
registers would be sufficient. However, we use an
extra bit to detect when the number becomes
greater than m. If one of the left-most bits of the
number (carry or sum) is one, the number is
reduced modulo m. Note that

2168
 = 2. (2167

 + 1) - 2 = 2m - 2 = m - 2 (mod m)

Hence, the reduction is achieved by subtracting
2168 (or simply deleting this bit) and adding m- 2 =
(11... 11111)2 (167 bits) to the number. If both of
the leftmost bits are 1 then: 2 . (2168) = 4. (2167 + 1)
- 4 = 4m - 4 = m - 4 (mod m). Therefore m - 4 =

(111.... 11101)2 (167 bits) has to be added to the
number and both of the leftmost bits are deleted.

4.2.2 Subtraction

Suppose k is a 168 bit number which we want to
subtract from another number modulo m. The
bitwise complement of k is found as

k’ = (2168 - 1) - k = 2 . (2167 + 1) - 3 - k = -3
- k (mod m)

Thus -k = k’ + 3 mod m. This means that to
subtract k from a number we simply add the
bitwise complement of k and 3 to the number.
There is a caveat though. Remember that our
numbers are kept in carry save representation, so,
there are two 168-bit numbers representing k. Let
ks and kc denote the sum and carry parts of k,
respectively. Since k = ks + kc then -k = -ks - kc =
(k’s + 3) + (k’c + 3) =ks’+kc’+6 mod m. Therefore
the constant value 6 has to be added to the
complements of the carry and sum registers in
order to compute -k.

4.2.3 Multiplication
We serialize our multiplication algorithm by
processing one bit of one operand and all bits of
the second operand in each iteration. The standard
multiplication algorithm had to be modified to
make it compatible with the carry save
representation. Due to the redundant
representation, the value of the leftmost bit of the
multiplier is not known. Hence, the left to right
multiplication algorithm may not be used directly.
We prefer to use the right to left multiplication
algorithm. With this change, instead of shifting the
product we multiply the multiplicand by two (or
shift left) in each iteration step. There are 3
registers used for the multiplication: R0
(multiplicand), R1 (product) and R2 (multiplier).
The multiplication algorithm has 3 steps :
1.Initialization:
This is done by the control circuit. The
multiplicand is loaded to R0, the multiplier is
loaded to R2 and R1 is reset.
2.Addition:

Elliptic Curve Processor Architecture To Design Unified Montgomery Multiplier …D. Prasadh et al.,

21

 This step is only done when the rightmost bit of
register R2 is 1. The content of register R0 is
added to R1.

3. Shifting:
The multiplier has to be processed bit by bit
starting from the right. We do this by shifting
register R2 to the right in each iteration of the
multiplication. Since the register R2 is connected
to the comparator, the algorithm terminates after
this step if the number becomes 0 else the
algorithm continues with Step 2. Note that no
counters are used in the design. This eliminates
potential increases in the critical path delay. The
multiplicand needs to be doubled in each iteration
as well. This is achieved by shifting register R0 to
the left. This operation is performed in parallel
with shifting R2, so no extra clock cycles are
needed. However, shifting to the left can cause
overdo. Therefore, the result needs to be reduced
modulo m if the leftmost bit of the register R0 is 1.

4.2.4 Inversion
To realize the inversion operation there are four
registers used to hold b; c; u and v, two temporary
registers are used for the addition of two numbers
in carry-save architecture. Two carry-save adders,
multiplexers and comparator architecture are also
utilized.
The inversion algorithm shown in Algorithm X has
5 steps:

1. Initialization
This is done by the control circuit. Load registers

with b = 1; c = 0; u = x (the data input) and v = m
= (2167

 + 1).
2. u = u/2

e
This operation is done by shifting u to the right
until a 1-bit is encountered. However, due to the
carry-save architecture this operation requires
special care. The rightmost bit of the carry register
is always zero since there is no carry input. Thus
just checking the rightmost bit of the sum register
is sufficient. Also, the carry has to be propagated
to the left in each iteration. This is done by adding
0 to the number. If a 1-bit is encountered, the
operation proceeds to the next step.

3. b = (-2

q-e
 . b) mod m

Assume u holds a random pattern; e will be very
small (not more than 3 for most of the cases).
Thus, q - e is most likely a large number.
Therefore, multiplication by 2q-e

 would require
many shifts to left. To compute this operation
more efficiently, this step is rewritten using the

identity 2q = -1 mod m as b = 2
-e

 . b (mod m) .

Therefore, b needs to be halved e-times. If b is
even we may shift it to the right and thereby divide
it by two. Otherwise, we add m to it to make it
even and then shift. Since this step takes e
iterations, it can be performed concurrently with
the 2nd step of the algorithm. Hence no extra clock
cycles are needed for this step.

4. Compare u with s = 3
The comparator architecture explained above is
used to implement this step. There are two cases
when u = 3: us = (11)2; uc = (00)2 and us = (01)2; uc

= (10)2. Therefore, the rightmost two bits need a
special logic for the comparison, and the rest of the
bits are connected directly to the three-state
comparator shown in Figure3.

5. Additions in (b, c, u, v) := (b+c, b, u+v, u)
Two clock cycles are needed to add two numbers
in carry-save architecture, since a carry-save adder
has 3 inputs and there are 4 numbers to add.
During the addition operation to preserve the
values of b and u the two temporary registers are
used.
4.3 Performance Analysis
In this section we analyze the speed performance
of the overall architecture and determine the
number of cycles required to perform the elliptic
curve operations. [14] The main contributors to the
delay are field multiplications and inversion
operations. Field additions are performed in 1
cycle (or 2 cycles if both operands are in the carry-
save representation). Therefore field additions
which take place outside of the multiplication or
inversion operations are neglected.

The multiplication operation iterates over the bits
of one operand. On average half of the bits will be
ones and will require a 2 cycle addition. Hence,

Elliptic Curve Processor Architecture To Design Unified Montgomery Multiplier …D. Prasadh et al.,

22

168 clock cycles will be needed. The multiplicand
will be shifted in each cycle and modulo reduced
in about half of the iterations. Hence another
1.5.168 = 252 cycles are spent. The multiplication
operation takes on average a total of 420 cycles.

The steps of the inversion algorithm are
reorganized in Table 1 according to the order and
concurrency of the operations. Note the two
concurrent operations shown in Step 2. In fact this
is the only step in the algorithm which requires
multiple clock cycles, hence the concurrency saves
many cycles.

In Step 2, u is shifted until all zero bits in the LSB
are removed. Each shift operation takes place
within one cycle. For a randomly picked value of u
the probability of the last e bits all being zeroes is

(1/2)
e
, hence the expected value of e is E(e) =

∑i=1to∞ i(1/2)i = 2. In each iteration of the algorithm
we expect on average of 2 cycles to be spent. Step
3 does not spend any cycles since the comparator
architecture is combinational. The additions in
Step 4 require 2 clock cycles.

Hence a total of 4 cycles is spent in each iteration
of the inversion algorithm. Our simulation results
showed that (see Section 3.3) the inversion
algorithm would iterate on average about 320
times. The total time spent in inversion is found as
1; 280 cycles. This is very close to our hardware
simulation results which gave an average of 1; 288
cycles.
 1: Initialize all registers
 (b,c,u,v)←(1,0,a,m)
 2: Shift off all trailing zeros and rotate b
 u ← u >>e b←b>>e (mod m)
 3: Check terminate condition
 If u = s return b
 4: Update variables
 (b,c,u,v) ← (b+c,b,u+v,u);
 go back to Step 2

The total number of clock cycles for point
addition and doubling is found as 2, 120 and 2,
540, respectively. The total time required for

computing a point multiplication is found as 545,
440 cycles.

4.4 Results and Comparison
The presented architecture was developed into
Verilog modules and synthesized using the
Synopsys tools Design Compiler and Power
Compiler [15]. In the synthesis we used the TSMC
0:13 µm ASIC library, which is characterized for
power. The resulting architecture was synthesized
for three operating frequencies. The
implementation

Figure 2: Implementation Results

results are shown in Figure 2. As seen in the figure
the area varies around 30 K gates.The circuit
achieves its intended purpose by consuming only
0:99 mW at 20 MHz. In this mode the point
multiplication operation takes about 31:9 msec.
Although this is not very fast, this operating mode
might be useful for interactive applications with
extremely stringent power limitations. On the other
hand, when the circuit is synthesized for 200 MHz
operation, the area is slightly increased to 34
Kgates, and the power consumption increased to
9.89 mW. [16] However, a point multiplication
takes now only 3.1 msec. We performed a research
to obtain the results from the previously built ECC

Elliptic Curve Processor Architecture To Design Unified Montgomery Multiplier …D. Prasadh et al.,

23

architectures. However, we concluded with a result
that there has not been any work done for low-
power ECC architecture design.

We compare our design with another
customized low-power elliptic curve
implementation presented by Schroeppel et al. In
CHES 2002. Their design is the closest to a low-
power ECC design. Their design employed an
elliptic curve defined over a field tower GF
(2178) and used specialized field arithmetic to
minimize the design. A point halving algorithm
was used in place of the traditional point doubling
algorithm. The design was power optimized
through clock gating and other standard methods
of [17] power optimization. The main contribution
was the clever minimization of the gate logic
through efficient tower field arithmetic. Note that
their design includes fully functional signature
generation architecture whereas our design is
limited to point multiplication. Although a side by
side comparison is not possible, we find it useful
to state their results: The design was synthesized
for 20 MHz operation using 0.5 µm ASIC
technology. The synthesized design occupied an
area of 112 Kgates and consumed 150 mW.

The elliptic curve signature was computed in 4.4
msec. unfortunately, since we did not have access
to the 0.5 µm technology, which would have made
the comparison precise. An architectural
comparison of the two designs shows that our
design operates bit serially in one operand whereas
their design employs a more parallel
implementation strategy. This leads to lower
critical paths and much smaller area in our design.
[18] The much shorter critical path allows much
higher operating frequencies requiring more clock
cycles to compute the same operation. However,
due to the smaller area, when operated at similar
frequencies our design consumes much less power.

5.CONCLUSION

In this paper we demonstrated that scaled
arithmetic, which is based on the idea of

transforming a class of primes into special forms
that enable efficient arithmetic, can be profitably
used in elliptic curve cryptography. To this end,
we implemented an elliptic curve cryptography
processor using scaled arithmetic. Implementation
results show that the use of scaled moduli in
elliptic curve cryptography offers a superior
performance in terms of area, power, and speed.
We proposed a novel inversion algorithm for
scaled moduli that result in an efficient hardware
implementation. It has been observed that the
inversion algorithm eliminates the need for
projective coordinates that require prohibitively a
large amount of extra storage. The successful use
of redundant representation (i.e. carry-save
notation) in all arithmetic operations including the
inversion with the introduction of an innovative
comparator design leads to a significant reduction
in critical path delay resulting in a very high
operating clock frequency.

The fact that the same data path (i.e. arithmetic
core) is used for all the field operations leads to a
very small chip area. Comparison with another
implementation demonstrated that our
implementation features desirable properties for
resource-constrained computing environments.
[18] We also implemented a Unified Multiplier
Architecture for the extension fields GF(p),
GF(2m) and GF(3m). Considering the results we
obtained from the previous architecture, we used a
different number representation, Redundant Signed
Digit representation. As a result we achieved the
construction of a novel and low-power architecture
for Montgomery multiplication algorithm.

References

[1] E. Savas, A. F. Tenca, and C.K. Koc. A
Scalable and Unied Multiplier Architecture for
Finite Fields gf(p) and gf(2m). In C. K. Koc and C.
Paar, editors, Cryptographic Hardware and
Embedded Sytems | CHES 2000, volume 1965 of
Lecture Notes in Computer Science, pages
277,292. Springer-Verlag, 2000.

Elliptic Curve Processor Architecture To Design Unified Montgomery Multiplier …D. Prasadh et al.,

24

[2] R. E. Crandall. Method and Apparatus for
Public Key Exchange in a Cryptographic System.
U.S. Patent Number 5,159,632, October 1992.
[3] G. B. Agnew, R. C. Mullin, and S. A.
Vanstone. An Implementation of Elliptic Curve
Cryptosystems over F2155 . IEEE Journal on
Selected Areas in Communications, 11(5):
804{813, June 1993.
[4] A. Avizienis. Signed-digit number
representations for fast parallel arithmetic. IRE
Trans. Electron. Computers, EC(10):389{400,
September 1961.
[5] W. Di_e and M. E. Hellman. New Directions in
Cryptography. IEEE Transactions on Information
Theory, 22:644{654, November 1976.
[6] P. L. Montgomery. Modular multiplication
without trial division. Mathe-matics of
Computation, 44(170):519{521, April 1985.
[7] J. A. Solinas. Generalized Mersenne Numbers.
CORR-99-39, CACR Technical Report, University
of Waterloo, 1999.
[8] B. S. Kaliski Jr. The Montgomery Inverse and
its Applications. IEEE Transactions on Computers,
44(8):1064{1065, 1995.
[9] N. Koblitz. Elliptic Curve Cryptosystems.
Mathematics of Computation, 48(177): 203 209,
January 1987.
[10] A. J. Menezes. Elliptic Curve Public Key
Cryptosystems. Kluwer Academic Publishers,
Boston, MA, 1993.
[11] P. L. Montgomery. Modular multiplication
without trial division. Mathe-matics of
Computation, 44(170):519{521, April 1985.
[12] D. Page and N. P. Smart. Hardware
Implementation of Finite Fields of Characteristic
Three. In B. S. Kaliski Jr., C. K. Koc, and C. Paar,
editors, Cryptographic Hardware and Embedded
Sytems | CHES 2002, volume 2523 of Lecture
Notes in Computer Science, pages 529{539.
Springer-Verlag Berlin, 2002.
[13] A. Shamir. Identity-Based Cryptosystems and
Signature Schemes. In Advances in Cryptology -
CRYPTO 1985, volume 196 of Lecture Notes in
Computer Science, pages 47,53. Springer-Verlag,
1985.

[14] R. Schroeppel, C. Beaver, R. Miller, R.
Gonzales, and T. Draelos. A Low-Power Design
for an Elliptic Curve Digital Signature Chip. In B.
S. Kaliski Jr., C. K. Koc, and C. Paar, editors,
Cryptographic Hardware and Embedded Sytems |
CHES 2002, Lecture Notes in Computer Science,
pages 366,380. Springer-Verlag Berlin, 2002.
[15] A. F. Tenca and C. K. Koc. A scalable
architecture for Montgomery multiplication. In C.
K. Koc and C. Paar, editors, Cryptographic
Hardware and Embedded Sytems, Lecture Notes in
Computer Science, No. 1717, pages 94{108.
Springer, Berlin, Germany, 1999.
[16] J. J. Thomas, J. M. Keller, and G. N. Larsen.
The Calculation of Multiplicative Inverses over
GF(p) E_ciently where p is a Mersenne Prime.
IEEE Transactions on Computers, 5(35):478,482,
1986.
[17] C. D. Walter. Faster Modular Multiplication
by Operand Scaling. In J. Feigenbaum, editor,
Advances in Cryptology | CRYPTO'91, Lecture
Notes in Computer Science, No. 576, pages
313,323. Springer-Verlag, 1992.
[18] E. Berlekamp. Algebraic Coding Theory.
McGraw-Hill, New York, NY, 1968.
[19] E. Popovici T. Kerins and W. P. Marnane.
Algorithms and Architectures for Use in FPGA
Implementations of Identity Based Encryption
Schemes. In Field Programmable Logic and
Applications, volume 3203 of Lecture Notes in
Computer Science, pages 74,83. Springer-Verlag,
2004.

