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ABSTRACT 

This work introduces new modulus scaling techniques for transforming a class of primes into 

special forms which enable efficient arithmetic. The scaling technique may be used to improve 

multiplication and inversion infinite fields. We present an efficient inversion algorithm that utilizes the 

structure of a scaled modulus. Our inversion algorithm exhibits superior performance to the Euclidean 

algorithm and lends itself to efficient hardware implementation due to its simplicity. Using the scaled 

modulus technique and our specialized inversion algorithm we develop elliptic curve processor 

architecture. The resulting architecture successfully utilizes redundant representation of elements in 

GF(p) and provides a low-power, high speed, and small footprint specialized elliptic curve 

implementation. We also introduce a unified Montgomery multiplier architecture working on the 

extension fields GF(p), GF(2
m

) and GF(3
m

). With the increasing research activity for identity based 

encryption schemes, there has been an increasing need for arithmetic operations in field GF(3
m

). Since 

we based our research on low-power and small footprint applications, we designed a unified 

architecture rather than having a separate hardware for GF3
m

.  
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1. INTRODUCTION 

1.1 Motivation 
The incredible improvements in ubiquitous 
computing, and its indispensable implications 
gives rise to its being an effective domain of 
interest. As the notion of ubiquitous computing is 
becoming more and more part of our lives, various 
applications consisting of this new technology can 
be encountered. RFIDs are currently being 
introduced into the supply chain. Wireless sensor 
networks are widely used for many applications. In 
some cities most of the people carry at least one 
contact less smart card in their pockets. These 
applications are becoming widespread, with an 
ultimate need of security. Currently, RFID 

applications have no security at all. Moreover, 
these applications have limited power resources, 
which make them ultra-low power devices. Power 
efficient implementations need to be used. Security 
applications are a part of the implementations, so 
they also have to be power-efficient. So far, public 
key cryptography has not even been considered for 
these devices due to its perceived complexity.  
 
The common perception of public key 
cryptography is that it is complex, slow and power 
hungry, and as such not at all suitable for use in 
these environments. It is therefore common 
practice to emulate the asymmetry of traditional 
[1] public key based cryptographic services 
through a set of protocols using symmetric key 
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based message authentication codes (MACs). 
Although the low computational complexity of 
MACs is advantageous, the protocol layer requires 
time synchronization between devices on the 
network and a significant amount of overhead for 
communication and temporary storage.  
The requirement for a general purpose CPU to 
implement these protocols as well as their 
complexity makes them prone to vulnerabilities 
and practically eliminates all the advantages of 
using symmetric key techniques in the first place. 
Our aim is to challenge the basic assumptions 
about public key cryptography which are based on 
a traditional software based approach. We propose 
a custom hardware assisted approach for which we 
claim that it makes public key cryptography 
feasible for low-power applications, provided we 
use the right selection of algorithms and associated 
parameters, careful optimization, and low-power 
design techniques. Several public key schemes can 
be used to provide the security services described 
above. [2] We take a closer look at Elliptic Curve 
Cryptosystems (ECC) as the most promising 
candidate for low-power implementations. [3] We 
implemented the hardware design of low-power 
and novel ECC architecture. 
 
After a short introduction into the motivation of 
the work done in this thesis and a brief 
introduction to the modular arithmetic in Section 
1, Section 2 will present some of the earlier works 
in the field. The concepts that we used in our 
research will be analyzed for useful ideas. 
Following that, modulus scaling techniques can be 
used for the background research. Also in this 
Section, the inversion algorithm that was achieved 
by modulus scaling techniques will be described 
and analyzed for hardware implementation. 
Section 4 presents the reader the system 
architecture of the design and unified multiplier 
architecture that can work for three extension 
fields. First the background research is presented, 
than the structure of the presented hardware is 
described. The algorithms used for Montgomery 
multiplication are examined in this chapter. 

Finally, Section 5 concludes the paper and presents 
avenues for future work. 
 
1.2 Modular Arithmetic 
Modular arithmetic has a variety of applications in 
cryptography. Many public-key algorithms heavily 
depend on modular arithmetic. [4]Among these, 
RSA encryption and digital signature schemes, 
discrete logarithm problem (DLP) based schemes 
such as the [5] Diffie-Helman key agreement and 
El-Gamal encryption and signature schemes, and 
elliptic curve cryptography play an important role 
in authentication and encryption protocols.  
 
The implementation of RSA based schemes 
requires the arithmetic of integers modulo a large 
integer, that is in the form of a product of two large 
primes n = p.q. On the other hand, 
implementations of Diffie-Helman and El-Gamal 
schemes are based on the arithmetic of integers 
modulo a large prime p. While ECDSA is built on 
complex algebraic structures, [6] the underlying 
arithmetic operations are either modular operations 
with respect to a large prime modulus (GF(p) case) 
or polynomial arithmetic modulo a high degree 
irreducible polynomial defined over the finite field 
GF(2) (GF(2k) case). Special moduli for GF(2k) 
arithmetic were also proposed. Low Hamming-
weight irreducible polynomials such as trinomials 
and pentanomials became a popular choice for 
both hardware and software implementations of 
ECDSA over GF(2k). Particularly, trinomials of 
the form xk + x + 1 allow efficient reduction. For 
many bit-lengths such polynomials do not exist; 
therefore less efficient trinomials, i.e. xk + xu + 1 
with u > 1, or polynomials, i.e. xk + xu + xv + xz + 
1, are used instead. Hence, in many cases the 
performance suffers degradation due to extra 
additions and alignment adjustments. 
  
2. PREVIOUS WORK 
A straightforward method to implement integer 
and polynomial modular multiplications is to first 
compute the product of the two operands, t = a.b, 
and then to reduce the product using the modulus, 
c = t mod p. Traditionally, the reduction step is 
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implemented by a division operation, which is 
significantly more demanding than the initial 
multiplication.[7]To alleviate the reduction 
problem in integer modular multiplications, 
Crandall proposed using special primes, primes of 
the form p = 2k -u, where u is a small integer 
constant. By using special primes, modular 
reduction turns into a multiplication operation by 
the small constant u, that, in many cases, may be 
performed by a series of less expensive shift and 
add operations. Let the number t represent the 2k-
bit result of a multiplication operation of two k-bit 
numbers. Let tl represent the low k-bits and th 
represent the high k-bits: 

t = th2k + tl 
Hence c = th2k + tl (mod p) 

which can be reduced for  p = 2k- u to 
c = th.u + t l (mod 2k - u). 

 
It should be noticed that th.u is not fully reduced. 
Depending on the length of u, a few more 
reductions are needed. The best possible choice for 
a special prime is a Mersenne prime, p = 2k -1, 
with k fixed to a word-boundary, i.e. k = 16,32,64. 
In this case, the reduction operation becomes a 
simple modular addition c = th + tl mod p. 
Similarly primes of the form 2k + 1 may simplify 
reduction into a modular subtraction c = tl - th mod 
p. Unfortunately, Mersenne primes and primes of 
the form 2k + 1 are scarce. For degrees up to 1000 
no primes of form 2k + 1 exist and only the two 
Mersenne primes 2521 - 1 and 2607 - 1 exist. 
Moreover, these primes are too large for ECDSA 
which utilizes bit-lengths in the range 160 - 350. 
Hence, a more practical choice is to use primes of 
the form 2k - 3. For a constant larger than u = 3, 
and a degree k that is not aligned to a word 
boundary, some extra shifts and additions may be 
needed.  
 
To relax the restrictions, [8] Solinas introduced a 
generalization for special primes. His technique is 
based on signed bit recoding. While increasing the 
number of possible special primes, additional low-
level operations are needed. The special modulus 
reduction technique introduced by Crandall 

restricts the constant u in p = 2k- u to a small 
constant that fits into a single word. 

 
3. MODULUS SCALING TECHNIQUES 

3.1 General Method 
The idea of modulus scaling was 

introduced by Walter. [9] In this work, the 
modulus was scaled to obtain a certain 
representation in the higher order bits, which 
helped the estimation of the quotient in Barrett's 
reduction technique. The method works by scaling 
to the prime modulus to obtain a new modulus, m 
= p.s. Reducing an integer a using the new 
modulus m will produce a result that is congruent 
to the residue obtained by reducing a modulo p. 
This follows from the fact that reduction is a 
repetitive subtraction of the modulus. Subtracting 
m is equivalent to s times subtracting p and thus (a 
mod m) mod p  a mod p : When a scaled modulus 
is used, residues will be in the range [m – 1, 0] = 
[s.p – 1, 0]. The number is not fully reduced and 
essentially we are using a redundant representation 
where an integer is represented using dlog2 se 
more bits than necessary. Consequently, it will be 
necessary that the final result is reduced by p to 
obtain a fully reduced representation. Here we 
wish to use scaling to produce moduli of special 
form. If a random pattern appears in a modulus, it 
will not be possible to use the low-weight 
optimizations discussed in section 2.  

 
3.2 Special Primes 
We present two heuristics that form a basis for 
efficient on-the-y scaling using primes of special 
forms: 
 
3.2.1 Heuristic 1 
Heuristic 1 If the base B representation of an 
integer contains a series of repeating digits, scaling 
the integer with the largest possible digit, produces 
a string of repeating zero digits in the scaled and 
recoded integer. The justification of the heuristic is 
quite simple. Assume the representation of the 
modulus in base B contains a repeating digit of 
arbitrary value D. We use the constant scaling 
factor s = B - 1 to compute m. When a string of 
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repeating D-digits is multiplied with the scaling 
factor, and written in base B we obtain the 
following 
(DDDD...DDD)B. (B - 1) = (DDDD...DDD0) B - 
(DDDD...DDD) B = (D000 ... 000D)B. 
The bar over the least significant digit denotes a 
negative valued digit. 
We provide the following example: 
Example 1 we select the following prime 
p = 
(5123456781234567812345678123456781234567
8123456807)16. 
By inspection we identify (12345678)16 as a 
repeating pattern. By selecting the base B = 232, 
the repeating pattern becomes a digit. The scaling 
factor is the largest digit s = B - 1 = 232 - 1 = 
(FFFFFFFF) 16. The scaled modulus is computed 
as 
m = s.p= 
(5123456730000000000000000000000000000000
0000000085DCBA97F9)16 
The representation may contain more than one 
repeating digit. For instance, the 
Prime 
p = (57777777777777333333333338B) 16 
has two repeating digits 7 and 3. Since both fit into 
a digit in base B = 16, scaling 
with B-1 = 15 will work on both strings: 
m = p.s = (57777777777777333333333338B)16 
.(F)16 
= (51FFFFFFFFFFFFC0000000000525)16. 
= (52000000000000 40000000000525)16. 
The presented scaling technique is simple, 
efficient, and only requires the modulus to have 
repeating digits. Since the scaling factor is fixed 
and only depends on the length of the repeating 
pattern - not its value -, a modulus with multiple 
repeating digits can be scaled properly at the cost 
of increasing the length of the modulus by a single 
digit. We present another heuristics for scaling, 
this technique is more efficient but more restrictive 
on the modulus. 
 
3.2.2 Heuristic 2 
Heuristic 2 given a modulus containing repeating 
D-digits in base B representation, Heuristic 2 

Given a modulus containing repeating D-digits in 
base B representation, if B - 1 is divisible by the 
repeating digit, then the modulus can be efficiently 
scaled by the factor B-1/D. 
As earlier the heuristic is verified by multiplying a 
string of repeating digits with the scaling factor 
and then by recoding. 
(DDD...DDD)B .B-1/D= ((B - 1) (B -1) (B - 1) ... 
(B - 1))B= (1000 ... 01)B. 
The following example shows the power of this 
simple technique. 
Example 2 Let the prime p be 
p = 
(D79435E50D79435D79435E50D79435E50D794
35E50D79435E50D79435E50|| 

D79435E50D79435E50D79435E50D7943
5E5)16 
By inspection the repeating pattern is detected as D 
= (0D79435E5)16. The digit D fits into 36-bits, 
thus the base is selected as B = 236. Since D| (B - 
1) the scaling factor is computed as 

s =236 – 1/ (0D79435E5)16= 19 
The scaled modulus becomes 

m = s.p = 2384 - 2320 – 1 
We have compiled a list of primes that when 
scaled with a small factor produce moduli of the 
form 2k ±1 in Table 4 (see Appendix A). These 
primes provide a wide range of perfect choices for 
the implementation of cryptographic schemes. 

 
3.3 Scaled Modular Inversion 
In this section we consider the application of 
scaled arithmetic to implement more efficient 
inversion operations. An efficient way of 
calculating multiplicative inverses is to use binary 
extended Euclidean based algorithms. The 
Montgomery inversion algorithm proposed by 
Kaliski is one of the most efficient inversion 
algorithms for random primes. Montgomery 
inversion, however, is not suitable when used with 
scaled primes since it does not exploit our special 
moduli. Furthermore, it can be used only when 
Montgomery arithmetic is employed. Therefore, 
what we need is an algorithm that takes advantage 
of the proposed special moduli. Thomas et al 
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proposed the Algorithm X for Mersenne primes of 
the form 2q – 1. 

 
Due to its simplicity Algorithm X is likely 

to yield an efficient hardware implementation. 
Another advantage of Algorithm X is the fact that 
the carry-free arithmetic can be employed. The 
main problem with other binary extended 
Euclidean algorithms is that they usually have a 
step involving comparison of two integers. The 
comparison in Algorithm X is much simpler and 
may be implemented easily using carry-free 
arithmetic. The algorithm can be modified to 
support the other types of special moduli as well. 
For instance, changing Step 4 of the algorithm to b 
:= -(2q-eb) (mod p) will make the algorithm work 
for special moduli of the form 2q + 1 with almost 
no penalty in the implementation. The only 
problem with a special modulus, m is the fact that 
it is not prime (but multiple of a prime, m = sp) 
and therefore inverse of an integer a < m does not 
exist when gcd(a,m) ≠ 1. With a small 
modification to the algorithm this problem may be 
solved as well. Without loss of generalization the 
solution is easier when s is a small prime number. 
Algorithm X normally terminates when y = 1 for 
integers that are relatively prime to the modulus, 
m. When the integer a is not relatively prime to the 
modulus, then Algorithm X must terminate when y 
= gcd(a,m) = s resulting b = a-1.s (mod m). In order 
to obtain the inverse of a when gcd(a,m)  ≠ 1, an 
extra multiplication at the end is necessary: 

b = b. (s-1 (mod p)) (mod m) 
 
where s-1 (mod p) needs to be precomputed. This 
precomputation and the task of checking y = s as 
well as y = 1, on the other hand, may be avoided 
utilizing the following technique. The integer a, 
whose inverse is to be computed, is first multiplied 
by the scale s before the inverse computation: a’ = 
a. s :  

When the inverse computation is 
completed we have the following equality 

a’. b + m. k = s 
and thus 

a.s.b + p.s.k = s  

When both sides of the equation is divided by s we 
obtain 

a.b + p.k = 1 
Therefore, the algorithm automatically yields the 
inverse of a as b = a-1 if the input is taken as s.a 
mod m instead of a. Although this technique 
necessitates an extra multiplication before the 
inversion operation independent of whether a is 
relatively prime to modulus m or not, eliminating 
the precomputation and a comparison is a 
significant improvement in a possible hardware 
implementation. Furthermore, this multiplication 
will reduce to several additions when the scale is a 
small integer such as the s = 3 in p = (2167 + 1)/3. 
Another useful modification to Algorithm X is to 
transform it into a division algorithm to compute 
operations of the form d/a.  
 
The only change required is to initialize b with d 
instead of 1 in Step 1 of the algorithm. [10] This 
simple modification saves one multiplication in 
elliptic curve operations. The Algorithm X 
modified for division with scaled modulus is 
shown below: 
Algorithm X - modified for division with scaled 
modulus 
Input: a є [1,m - 1], d є [1,m - 1], m, and q where 
m = 2q ±1 
Output:b є [1;m - 1], where b = d/a (mod m) 

1: a := a . s (mod m); 
2: (b, c, u, v) := (d, 0, a,m); 
3: Find e such that 2e||u 
4: u := u/2e; // shift of trailing zeros 
5: b := ╤(2q-eb) (mod m); // circular left 

shift 
6: if u = s return b; 
7: (b,c,u,v) := (b + c,b,u + v,u); 
8: go to Step 3 

 
It should be noted that the notation 2e||u stands for 
the largest integer value of e such that 2e exactly 
divides u. One can easily observe that the 
Algorithm X has the loop invariant b/u (mod m)  
d/a (mod m). Note that the Step 3 of Algorithm X 
can be performed using simple circular left shift 
operations. The advantage of performing the Step 
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3 with simple circular shifts may disappear for 
moduli of the form 2q-c with even a small c. Many 
inversion algorithms consist of a big loop and the 
efficiency of an inversion algorithm 

 
Figure: 1 Distribution of k 

 
Depends on the number of iterations in this loop, k 
,which, in turn, determines the total number of 
additions, shift operations to be performed. The 
numbers of iterations are usually of random nature 
(but demonstrate a regular and familiar 
distribution) and only statistical analysis can be 
given. In order to show that Algorithm X is also 
efficient in terms of iteration number, we 
compared its distribution for k against that of 
Montgomery inversion algorithm. We computed 
the inverses of 10000 randomly chosen integers 
modulo m = 2167 + 1 using Algorithm X. Since p = 
m/3 is a 166-bit prime we repeated the same 
experiment with the Montgomery inversion 
algorithm using p. Besides having much easier 
operations in each iteration we observed that the 
average number of iterations of Algorithm X is 
slightly lower than the total number of iterations of 
the Montgomery inversion algorithm (Figure 1). 
 

4. THE ELLIPTIC CURVE ARCHITECTURE 
We developed an elliptic curve architecture using 
the scaled modulus technique and our specialized 
inversion algorithm [11]. Our aim in implementing 

this hardware was to actually see the outcomes of 
our techniques. 
 
4.1 Design Methodology 
We built our elliptic curve scheme over the prime 
field GF((2167+1)/3). [12]This particular prime 
allows us to use a scaled modulus m = 2167 + 1 
with a very small scaling factor s = 3. To 
implement the field operations we use Algorithm 
X as outlined in section 3.3. Our simulation for 
this particular choice of prime showed that our 
inversion technique is only by about three times 
slower than a multiplication operation. 
Furthermore, the inversion is implemented as a 
division saving one multiplication operation.  
 
Thus the actual ratio is closer to two. Since 
inversion is relatively fast, we prefer to use affine 
coordinates. Besides faster implementation, affine 
coordinates provides a significant amount of 
reduction in power and circuit area since projective 
coordinates requires a large amount of extra 
storage. For an elliptic curve of form y2 = x3 + ax + 
b defined over GF(2167 + 1)/3) we use the standard 
point addition operation. For power efficiency we 
optimize our design to include minimal hardware. 
An effiective strategy in reducing the power 
consumption is to spread the computation to a 
longer time interval via serialization which we 
employ extensively. On the other hand, a 
reasonable time performance is also desired.  
 
Since the elliptic curve is defined over a large 
integer field GF(p) (168-bits) carry propagations 
are critical in the performance of the overall 
architecture. To this end, we built the entire 
arithmetic architecture using the carry-save 
methodology. This design choice regulates all 
carry propagations and delivers a very short 
critical path delay, and thus a very high limit for 
the operating frequency. The redundant 
representation doubles all registers in the 
arithmetic unit, i.e. we need two separate registers 
to hold both the carry part and the sum part of a 
number. Furthermore, the inherent difficulty in 
comparing numbers represented in carry-save 
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notation is another challenge. In addition, shifts 
and rotate operations become more cumbersome. 
Nevertheless, as evident from our design it is 
possible to overcome these difficulties. In 
developing the arithmetic architecture we 
primarily focused on finding the minimal circuit to 
implement Algorithm X efficiently. Since the 
architecture is built around the idea of maximizing 
hardware sharing among various operations, the 
multiplication, squaring and addition operations 
are all achieved by the same arithmetic core.  
 
The control is hierarchically organized to 
implement the basic arithmetic operations, point 
addition, point doubling, and the scalar point 
multiplication operation in layers of simple state 
machines. The simplicity of Algorithm X and 
scaled arithmetic allows us to accomplish all 
operations using only a few small state machines. 
 

4.2 Implementation of the Arithmetic Unit 
The arithmetic unit is built around four main 
registers R0; R1; R2; R3, and two extra registers 
Rtemp0; Rtemp1 which are used for temporary 
storage [13]. Note that these registers store both 
the sum and carry parts due to the carry-save 
representation. For the same purpose the 
architecture is built around two (almost) parallel 
data paths. We briey outline the implementation of 
basic arithmetic operations. 
 

4.2.1 Modulo Reduction 

Since the hardware works for m = 2167 + 1, 168-bit 
registers would be sufficient. However, we use an 
extra bit to detect when the number becomes 
greater than m. If one of the left-most bits of the 
number (carry or sum) is one, the number is 
reduced modulo m. Note that 
 

2168
 = 2. (2167

 + 1) - 2 = 2m - 2 = m - 2 (mod m) 
 
Hence, the reduction is achieved by subtracting 
2168 (or simply deleting this bit) and adding m- 2 = 
(11... 11111)2 (167 bits) to the number. If both of 
the leftmost bits are 1 then: 2 . (2168) = 4. (2167 + 1) 
- 4 = 4m - 4 = m - 4 (mod m). Therefore m - 4 = 

(111.... 11101)2 (167 bits) has to be added to the 
number and both of the leftmost bits are deleted. 

 
4.2.2 Subtraction 

Suppose k is a 168 bit number which we want to 
subtract from another number modulo m. The 
bitwise complement of k is found as 

k’ = (2168 - 1) - k = 2 . (2167 + 1) - 3 - k = -3 
- k (mod m) 

Thus -k = k’ + 3 mod m. This means that to 
subtract k from a number we simply add the 
bitwise complement of k and 3 to the number. 
There is a caveat though. Remember that our 
numbers are kept in carry save representation, so, 
there are two 168-bit numbers representing k. Let 
ks and kc denote the sum and carry parts of k, 
respectively. Since k = ks + kc  then -k = -ks - kc = 
(k’s + 3) + (k’c + 3) =ks’+kc’+6 mod m. Therefore 
the constant value 6 has to be added to the 
complements of the carry and sum registers in 
order to compute -k. 

 
4.2.3 Multiplication 
We serialize our multiplication algorithm by 
processing one bit of one operand and all bits of 
the second operand in each iteration. The standard 
multiplication algorithm had to be modified to 
make it compatible with the carry save 
representation. Due to the redundant 
representation, the value of the leftmost bit of the 
multiplier is not known. Hence, the left to right 
multiplication algorithm may not be used directly. 
We prefer to use the right to left multiplication 
algorithm. With this change, instead of shifting the 
product we multiply the multiplicand by two (or 
shift left) in each iteration step. There are 3 
registers used for the multiplication: R0 
(multiplicand), R1 (product) and R2 (multiplier). 
The multiplication algorithm has 3 steps : 
1.Initialization:  
This is done by the control circuit. The 
multiplicand is loaded to R0, the multiplier is 
loaded to R2 and R1 is reset. 
2.Addition:  
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 This step is only done when the rightmost bit of 
register R2 is 1. The content of register R0 is 
added to R1. 
 
3. Shifting:  
The multiplier has to be processed bit by bit 
starting from the right. We do this by shifting 
register R2 to the right in each iteration of the 
multiplication. Since the register R2 is connected 
to the comparator, the algorithm terminates after 
this step if the number becomes 0 else the 
algorithm continues with Step 2. Note that no 
counters are used in the design. This eliminates 
potential increases in the critical path delay. The 
multiplicand needs to be doubled in each iteration 
as well. This is achieved by shifting register R0 to 
the left. This operation is performed in parallel 
with shifting R2, so no extra clock cycles are 
needed. However, shifting to the left can cause 
overdo. Therefore, the result needs to be reduced 
modulo m if the leftmost bit of the register R0 is 1. 

 
4.2.4 Inversion 
To realize the inversion operation there are four 
registers used to hold b; c; u and v, two temporary 
registers are used for the addition of two numbers 
in carry-save architecture. Two carry-save adders, 
multiplexers and comparator architecture are also 
utilized. 
The inversion algorithm shown in Algorithm X has 
5 steps: 

1. Initialization  
This is done by the control circuit. Load registers 

with b = 1; c = 0; u = x (the data input) and v = m 
= (2167

 + 1). 
2. u = u/2

e 
This operation is done by shifting u to the right 
until a 1-bit is encountered. However, due to the 
carry-save architecture this operation requires 
special care. The rightmost bit of the carry register 
is always zero since there is no carry input. Thus 
just checking the rightmost bit of the sum register 
is sufficient. Also, the carry has to be propagated 
to the left in each iteration. This is done by adding 
0 to the number. If a 1-bit is encountered, the 
operation proceeds to the next step. 

 
3. b = (-2

q-e
 . b) mod m 

Assume u holds a random pattern; e will be very 
small (not more than 3 for most of the cases). 
Thus, q - e is most likely a large number. 
Therefore, multiplication by 2q-e

 would require 
many shifts to left. To compute this operation 
more efficiently, this step is rewritten using the 

identity 2q = -1 mod m as b = 2
-e

 . b (mod m) . 

Therefore, b needs to be halved e-times. If b is 
even we may shift it to the right and thereby divide 
it by two. Otherwise, we add m to it to make it 
even and then shift. Since this step takes e 
iterations, it can be performed concurrently with 
the 2nd step of the algorithm. Hence no extra clock 
cycles are needed for this step. 

4. Compare u with s = 3 
The comparator architecture explained above is 
used to implement this step. There are two cases 
when u = 3: us = (11)2; uc = (00)2 and us = (01)2; uc 

= (10)2. Therefore, the rightmost two bits need a 
special logic for the comparison, and the rest of the 
bits are connected directly to the three-state 
comparator shown in Figure3. 

5. Additions in (b, c, u, v) := (b+c, b, u+v, u) 
Two clock cycles are needed to add two numbers 
in carry-save architecture, since a carry-save adder 
has 3 inputs and there are 4 numbers to add. 
During the addition operation to preserve the 
values of b and u the two temporary registers are 
used. 
4.3 Performance Analysis 
In this section we analyze the speed performance 
of the overall architecture and determine the 
number of cycles required to perform the elliptic 
curve operations. [14] The main contributors to the 
delay are field multiplications and inversion 
operations. Field additions are performed in 1 
cycle (or 2 cycles if both operands are in the carry-
save representation). Therefore field additions 
which take place outside of the multiplication or 
inversion operations are neglected.  

 
The multiplication operation iterates over the bits 
of one operand. On average half of the bits will be 
ones and will require a 2 cycle addition. Hence, 
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168 clock cycles will be needed. The multiplicand 
will be shifted in each cycle and modulo reduced 
in about half of the iterations. Hence another 
1.5.168 = 252 cycles are spent. The multiplication 
operation takes on average a total of 420 cycles. 

 
The steps of the inversion algorithm are 
reorganized in Table 1 according to the order and 
concurrency of the operations. Note the two 
concurrent operations shown in Step 2. In fact this 
is the only step in the algorithm which requires 
multiple clock cycles, hence the concurrency saves 
many cycles.  

 
In Step 2, u is shifted until all zero bits in the LSB 
are removed. Each shift operation takes place 
within one cycle. For a randomly picked value of u 
the probability of the last e bits all being zeroes is 

(1/2)
e
, hence the expected value of e is E(e) = 

∑i=1to∞ i(1/2)i = 2. In each iteration of the algorithm 
we expect on average of 2 cycles to be spent. Step 
3 does not spend any cycles since the comparator 
architecture is combinational. The additions in 
Step 4 require 2 clock cycles. 

 
Hence a total of 4 cycles is spent in each iteration 
of the inversion algorithm. Our simulation results 
showed that (see Section 3.3) the inversion 
algorithm would iterate on average about 320 
times. The total time spent in inversion is found as 
1; 280 cycles. This is very close to our hardware 
simulation results which gave an average of 1; 288 
cycles. 
      1:  Initialize all registers 
             (b,c,u,v)←(1,0,a,m) 
      2:  Shift off all trailing zeros and rotate b 
              u ← u >>e     b←b>>e (mod m) 
       3:  Check terminate condition 
              If u = s return b 
        4:   Update variables 
              (b,c,u,v) ← (b+c,b,u+v,u); 
      go back to Step 2 

The total number of clock cycles for point 
addition and doubling is found as 2, 120 and 2, 
540, respectively. The total time required for 

computing a point multiplication is found as 545, 
440 cycles. 

 
4.4 Results and Comparison 
The presented architecture was developed into 
Verilog modules and synthesized using the 
Synopsys tools Design Compiler and Power 
Compiler [15]. In the synthesis we used the TSMC 
0:13 µm ASIC library, which is characterized for 
power. The resulting architecture was synthesized 
for three operating frequencies. The 
implementation 

 
Figure 2: Implementation Results 

 
results are shown in Figure 2. As seen in the figure 
the area varies around 30 K gates.The circuit 
achieves its intended purpose by consuming only 
0:99 mW at 20 MHz. In this mode the point 
multiplication operation takes about 31:9 msec. 
Although this is not very fast, this operating mode 
might be useful for interactive applications with 
extremely stringent power limitations. On the other 
hand, when the circuit is synthesized for 200 MHz 
operation, the area is slightly increased to 34 
Kgates, and the power consumption increased to 
9.89 mW. [16] However, a point multiplication 
takes now only 3.1 msec. We performed a research 
to obtain the results from the previously built ECC 
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architectures. However, we concluded with a result 
that there has not been any work done for low-
power ECC architecture design.  
 

We compare our design with another 
customized low-power elliptic curve 
implementation presented by Schroeppel et al. In 
CHES 2002. Their design is the closest to a low-
power ECC design. Their design employed an 
elliptic curve defined over a field tower       GF 
(2178) and used specialized field arithmetic to 
minimize the design. A point halving algorithm 
was used in place of the traditional point doubling 
algorithm. The design was power optimized 
through clock gating and other standard methods 
of [17] power optimization. The main contribution 
was the clever minimization of the gate logic 
through efficient tower field arithmetic. Note that 
their design includes fully functional signature 
generation architecture whereas our design is 
limited to point multiplication. Although a side by 
side comparison is not possible, we find it useful 
to state their results: The design was synthesized 
for 20 MHz operation using 0.5 µm ASIC 
technology. The synthesized design occupied an 
area of 112 Kgates and consumed 150 mW.  
 
The elliptic curve signature was computed in 4.4 
msec. unfortunately, since we did not have access 
to the 0.5 µm technology, which would have made 
the comparison precise. An architectural 
comparison of the two designs shows that our 
design operates bit serially in one operand whereas 
their design employs a more parallel 
implementation strategy. This leads to lower 
critical paths and much smaller area in our design. 
[18] The much shorter critical path allows much 
higher operating frequencies requiring more clock 
cycles to compute the same operation. However, 
due to the smaller area, when operated at similar 
frequencies our design consumes much less power. 

 
5.CONCLUSION 

 

In this paper we demonstrated that scaled 
arithmetic, which is based on the idea of 

transforming a class of primes into special forms 
that enable efficient arithmetic, can be profitably 
used in elliptic curve cryptography. To this end, 
we implemented an elliptic curve cryptography 
processor using scaled arithmetic. Implementation 
results show that the use of scaled moduli in 
elliptic curve cryptography offers a superior 
performance in terms of area, power, and speed. 
We proposed a novel inversion algorithm for 
scaled moduli that result in an efficient hardware 
implementation. It has been observed that the 
inversion algorithm eliminates the need for 
projective coordinates that require prohibitively a 
large amount of extra storage. The successful use 
of redundant representation (i.e. carry-save 
notation) in all arithmetic operations including the 
inversion with the introduction of an innovative 
comparator design leads to a significant reduction 
in critical path delay resulting in a very high 
operating clock frequency.  

 
The fact that the same data path (i.e. arithmetic 
core) is used for all the field operations leads to a 
very small chip area. Comparison with another 
implementation demonstrated that our 
implementation features desirable properties for 
resource-constrained computing environments. 
[18] We also implemented a Unified Multiplier 
Architecture for the extension fields GF(p), 
GF(2m) and GF(3m). Considering the results we 
obtained from the previous architecture, we used a 
different number representation, Redundant Signed 
Digit representation. As a result we achieved the 
construction of a novel and low-power architecture 
for Montgomery multiplication algorithm. 
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