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Abstract—In this paper minimization of BER in 
MUD based on neural network has been proposed. 
The change in weights from Widrow-Hoff learning 
algorithm has been used to update the weight 
vectors of the equalizer. Neural networks can be 
used for linear design, adaptive prediction, 
amplitude detection, character recognition and 
many other applications. In this paper adaptive 
prediction has been used in detecting the errors 
caused in AWGN channel. These errors are rectified 
by using Adaptive prediction methods based LMS 
algorithm for updating their weights. SDMA scheme 
with 3 users and 4 receiver antennas has been 
considered in the present work for obtaining the 
results. BPSK is used as the modulation scheme.  

Index Terms— Adaptive Algorithm, bit error rate 
(BER), channel, neural networks, multi user 
detection (MUD), Widrow-Hoff. 

1. INTRODUCTION 
Neural Network based smart antennas are capable 

of improving the achievable wireless system capacity  
and quality by suppressing the effects of both inter-
symbol interference (ISI) and co-channel interference 
(CCI). In this paper, we consider a space-division 
multiple access (SDMA) uplink scheme, where each 
transmitter employs a single antenna, while the base 
station (BS) receiver has multiple antennas [1-3]. In a 
CDMA system, each user is separated by a unique user-
specific spreading code. By contrast, an SDMA system 
differentiates each user by the associated unique user 
specific channel impulse response (CIR) encountered at 
the receiver antennas. In this analogy, the unique user-
specific CIR plays the role of a user-specific CDMA 
signature. However, owing to the non-orthogonal nature 
of the CIRs, an effective multiuser detection (MUD) is 
required for separating the users in an SDMA system 
[4-7]. Neural networks have recently been used in the 
design of multiuser receivers for SDMA systems. 
Neural Network based receivers employing the 
Widrow-Hoff criterion usually show good performance 
and have simple adaptive implementation, at the 
expense of a higher computational complexity [8-11]. 
The deployment of non-linear structures, such as neural 
networks, can mitigate more effectively inter-symbol 

interference, caused by the multipath effect of radio 
signals, and multiple access interference, which arise 
due to the non-orthogonality between user signals. In 
the last few years, different artificial neural networks 
structures have been used in the design of multiuser 
detectors (MUD). These neural systems make use of 
non-linear functions to create decision boundaries to 
detect transmitted symbols, whilst conventional 
(MUDs) employ linear functions to form such decision 
regions. In addition, the bulk of previously reported 
neural and linear receivers are based upon the LMS 
criterion, since this approach usually shows good 
performance and has simple adaptive implementation. 
However, it is well known that the LMS cost function is 
not optimal in digital communications applications, and 
the most appropriate cost function is the minimum bit 
error rate (MBER). The approximate minimum bit error 
rate (AMBER) is one of the most successful and 
suitable algorithms for adaptive implementation using 
linear receiver structures, provided the application can 
handle a long training sequence. However, the AMBER 
methodology has not been proposed for SDMA 
networks and hence the present work throws light on 
this area. In this paper, a similar approximate minimum 
bit error rate approach to adaptive multiuser receivers 
using dynamic neural networks based on Widrow-Hoff 
learning algorithm has been proposed.  

The paper is organized as follows. Section II 
briefly describes the SDMA system model and a linear 
multiuser receiver. The proposed methodology of 
Widrow-Hoff algorithm is explained in section III. 
Section IV is dedicated to minimizing the BER using 
Widrow-Hoff learning algorithm. Section V shows the 
discusses and the simulated results and conclusion are 
drawn in section VI. 

2. SYSTEM MODEL 
Consider a MIMO system employing M users with 

a single transmit antenna each and as entire receiver 
assisted by an L-element antenna array, shown in the 
Fig 1. For the M users supported in the system, the 
transmitted samples at the symbol rate are sm(k)=[sm(k) 
sm(k+1) sm(k+2) …..]T, 1≤m≤M, where sm(k) is the kth  
transmitted symbol of the user m. At the L receive 
antennas, Gaussian white noises are introduced. For the 
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lth  receive antenna, nl(k),  an independently identically 
distributed complex-valued Gaussian white noise 
process with E[nl(k)] = 0 and E[|nl(k)|2] = 2  n

2 is 
added to the noise-free part of the lth receive antenna’s 

output ( )lx k . Then the received signal samples xl(k) at 
the symbol rate for 1 ≤ l ≤ L are given 
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where  
C

T
l,m 0,l,m 1,l,m n -1,l,mc  = [c  c c ] denotes the 

tap vector of the CIR connecting the user m and the lth 
receive antenna . In BPSK modulation each user sm(k) 
{  1} has the equal transmit power of E[|sm(k)}2] = 

s 2 = 1. 
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denotes the mth user detector’s equalizer weight vector 
associated with the lth  receive antenna. The M user 
detectors’ decisions are defined by 
         ˆ ( ) sgn( ( )),1m Rm

s k d y k m M                    (3) 

where ˆ ( )ms k d is the estimate of 

( ), ( ) [ ( )]m Rm ms k d y k y k    denotes the real part 

of ( )my k , and sgn( ) the sign function. Again for 
notational simplicity, we assume that each of the M 

detectors has the same decision delay d, and all 
the 0 2F cd n n    . Let us define   
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m m m L mw w w w                                    (4) 
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Then the output of the mth  detector can be written as  
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Let us define the ( 1)F F Cn n n    CIR convolution 
matrix associated with the user m and lth  receive 
antenna as shown in the bottom of the page, and further 
introduce the overall system CIR convolution matrix as   
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The received signal vector x(k) can be expressed by 

           ( ) ( ) ( ) ( ) ( )x k Cs k n k x k n k                     (9) 
where  

          1 2( ) [ ( ) ( ) ( )]T
Ln k n k n k n k                      (10) 

With ( ) [ ( ) ( 1) ( 1)]T
l l l L Fn k n k n k n k n    and  

              1 2( ) [ ( ) ( ) ( )]T T T T
Ms k s k s k s k             (11) 

 
Fig. 1 Schematic of an antenna-array-aided SDMA system, where each of the M users is equipped with a 

single transmit antenna, and the receiver is assisted by an L-element antenna array. 
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(14) 

With  
( ) [ ( ) ( 1) ( 2)]T

m m m M F Cs k s k s k s k n n       
 

note that the output of the mth  detector can be 
expressed as  

           1 2( ) [ ( ) ( ) ( )]T T T T
Ms k s k s k s k                     (12) 

 
With 

( ) [ ( ) ( 1) ( 2)]T
m m m M F Cs k s k s k s k n n      

note that the output of the mth  detector can be 
expressed as                                               

( ) ( ( ) ( )) ( ) ( )H
m m mmy k w x k n k y k e k        (13) 
 

where ( )kme  is Gaussian  distribution function having 

zero mean. 
 

3. WIDROW-HOFF ALGORITHM 
Artificial neural systems computation lies in the 

middle ground between engineering and artificial 
intelligence. The neural network can also be defined as 
interconnection of neurons, such neuron outputs are 
connected through weights, to all other neurons 
including them. Both lag-free and delay connections are 
allowed. A network can be connected in cascade to 
create a multilayer network. In such network, the output 
of a layer is the input to the following layer is called 
FEED FORWARD. A feedback network can be 
obtained from the feed-forward network by connecting 
the neurons outputs to their inputs.  

In the early 1960s a device called ADALINE (for 
ADAptive LINEar combiner) was introduced and a new 
powerful learning rule called the Widrow-Hoff learning 
rule was developed by BERNARD Widrow and 
Marcian Hoff (1960, 1962). This method falls under 
feedback network category. The rule minimized the 
summed square error during training involving pattern 
classification. 

The Widrow-Hoff learning rule is applicable for 
the supervised training of neural networks. It is 
independent of the activation function of neurons used 

since it minimizes the squared error between the desired 
output value di and the neutron’s activation value neti = 
wi

t(x). The learning signal for this rule is defined as 
follows         

               
t

i ir d w x�                                   (14) 
 

The weight vector increment under this learning rule 
is 

( )tw c d w x wi i i  
 

 
or, for the single weight the adjustment is 

( ),
tw c d w x wi j i i j       for j=1,2, ……, n 

This rule can be considered as a special case of the 
delta learning rule. Indeed, assuming that the activation 
function is simply the identity function becomes 
identity to (1). This rule is sometimes called LMS (least 

mean square) learning rule. Weights are initialized at 
any values in this method. Thus the Widrow-Hoff 

methodology can be used for obtaining the change in 
weight values. Here, the weight vectors corresponding 
to equalizers have been considered.  

4. MINIMIZING THE BER USING WIDROW-
HOFF LEARNING ALGORITHM 

Step: 1 Generate the data of three users and encode to 
BPSK    modulation  and transmit  through 

channel. 

Step: 2 Give the received data as input to the equalizer 
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Fig. 2 Widrow –Hoff Learning algorithm 

 

gopalax Publications  266 



   

Step: 3  Initialize the weight vectors 
Step:4   Calculate the error and update the new weight 

   Step: 5  Give the received and target as input to the 
WIDROW-HOFF learning algorithm to calculate 
the next iteration weight. Go to step 4 

Step: 6   Calculate the output obtained from the learning 
algorithm and plot the results. 

Step: 7    STOP. 

5. SIMULATION STUDY 
The system used in our simulation supported M = 3 

users with L = 4 receiver antennas [1-3], [12]. All three 
users had an equal transmit power. The ML = 12 CIRs 
are listed in Table I, each CIR having nc = 2 taps. The 
CIRs used in the both the stationary and fading 
channels are extensions of the often-used single-input 
single-output (SISO) CIRs proposed by Proakis in his 
book, which were extended to the MIMO. The results 
obtained for the MUD through the channel with values 
shown in Table I are shown in Figures 3 to 5. In the 
simulation, all 12 CIRs were normalized to provide to 

unit channel energy, i.e., ||cl,m||2 = 1 for all l  and m. thus 
SIRi(m) = 0 dB for all m and i. each  

Equalizer temporal filter had a length of nF = 3, 
and the detector decision delay was chosen to be d = 1. 

 
Fig.3 BER comparison of adaptive LMS and 

WIDROW-HOFF based MUD for 3 user and 4 
antenna stationary system for user 1 

Fig. 4 BER comparison of adaptive LMS and 
WIDROW-HOFF based MUD for 3 user and 4 

antenna stationary system of user 2 

 
Fig. 5. BER comparison of adaptive LMS and 

WIDROW-HOFF based MUD for 3 user and 4 
antenna stationary system of user 3 

TABLE I 
CIRS FOR THE 3-USER 4-ANTENNA STATIONARY SYSTEM. SIMULATED CIRS WERE ( ) / | ( ) |, ,c z c zl m l m TO PROVIDE UNIT 

CHANNEL ENERGY 

( ),c zl m
 

1m   2m   3m   

1l   1( 0.5 0.4) (0.7 0.6)j j z   
 

1( 0.1 0.2) (0.7 0.6)j j z     
1( 0.7 0.9) (0.6 0.4)j j z     

2l   1(0.5 0.4) ( 0.8 0.3)j j z   
 

1( 0.3 0.5) ( 0.7 0.9)j j z    
 

1( 0.6 0.8) ( 0.6 0.7)j j z      

3l   1(0.4 0.4) ( 0.7 0.8)j j z   
 

1( 0.1 0.2) (0.7 0.6)j j z     
1(0.3 0.5) (0.9 0.1)j j z    

4l   1(0.5 0.5) (0.6 0.9)j j z  
 

1( 0.6 0.4) (0.9 0.4)j j z     
1( 0.6 0.6) (0.8 0.0)j j z     

 

267 gopalax Publications 



   

The step size of these algorithms is chosen for fast 
convergence and small steady state error as 0.001.  

Fig. 3 shows the bit error rate of the both the 
WIDROW-HOFF and LMS methods for user one. Blue 
line represents the BER curve using WIDROW-HOFF 
and red line shows result LMS. In this figure LMS 
starts in between 10-0 to 10-1 and constant up to zero 
SNR after that graph is gradually decreasing up to four 
SNR and LMS follows constant up to eleven SNR and 
suddenly falls. But in the case of WIDROW-HOFF 
learning algorithm the graph is starts above from 10-1 
and slope decreases to make the curve to reach to 8.5 
SNR very quickly. Thus the error is reduced in this case 
with a margin of 2db. 

Fig. 4 shows the bit error rate of both the 
WIDROW-HOFF and LMS methods for user two. In 
this case LMS starts in between 10-0 to 10-1 and constant 
up to zero SNR after that graph is gradually decreasing 
up to four SNR and LMS follows constant up to eleven 
SNR and suddenly falls. However, in the case of 
WIDROW-HOFF learning algorithm the graph is starts 
above from 10-1 and slope decreases to make the curve 
to reach to 9 SNR very quickly. In this case the 
reduction of error  is 2db. The proposed algorithm 
showed its supremacy until this point. Finally, Fig. 5 
shows the BER curve for user 3. 

The output obtained by using WIDROW-HOFF 
and LMS algorithm shown in Fig. 5 is nearly similar to 
the other cases discussed previously. In this case LMS 
starts from 10-2 and constant up to zero SNR after that 
graph is gradually decreasing up to four SNR and LMS 
follows constant up to eleven SNR and suddenly falls. 
But in the case of WIDROW-HOFF learning algorithm 
the graph is starts below 10-1 and slope reaches to 8.1 
SNR very quickly. The error reduction in this case is 
2.9db. From all the results obtained it is seen that the 
proposed Widrow-Hoff algorithm for reducing BER is 
working efficiently. The results will look more 
pronounced if it plotted up to a SNR value of 15. 
However, due to vast time-taking process results only 
up to SNR of 12 has been shown. The comparison of 
net error reduction obtained by proposed algorithm and 
LMS algorithm is shown in Table II.  

 
 
 
 
 
 
 
 

6.  CONCLUSIONS 
MUD based on the neural network has been 

investigated for multiple-antenna-aided SDMA 
systems. A novel WIDROW-HOFF design has been 
proposed. It has been shown that WIDROW-HOFF 
assisted MUD can obtain significant performance gains 
over the standard LMS design, in terms of achievable 
system BER. It requires half of the computational 
complexity needed by the LMS algorithm for BPSK 
signaling. Our simulated results have demonstrated that 
the adaptive LMS assisted MUD converges faster and 
consistently achieves better BER performance, 
compared with the LMS STE-assisted MUD.  
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TABLE II 
COMPARISON OF BER OF PROPOSED WIDROW-

HOFF ALGORITHM AND LMS ALGORITHM 
 

Users 
WIDROW-

HOFF 
(db) 

LMS 
 

(db) 

ERROR 
REDUCED 

(db) 
User 1 8.5 11 2.5 

User 2 9 11 2 

User 3 8.1 11 2.9 
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