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Abstract—The present paper focuses on a hybrid 
neural network coupled with controlled elitist type 
genetic algorithm for multi-response optimization in 
a traditional drilling process. Firstly a Back 
Propagation Neural Network (BPNN) structure is 
developed to predict the output responses like flank 
wear, thrust force and torque and then the multi-
objective genetic algorithm (MOGA) is applied for 
minimizing the responses obtained from the BPNN 
to have an optimized cutting condition. The 
proposed approach is found efficient and robust as 
the simulated results have a close match with the 
experimental data.     

Index Terms—Drill Wear, Process Modeling, Back-
Propagation Neural Network, Multi-Objective 
Genetic Algorithm, Optimization.  

I.  INTRODUCTION 
Your Product quality of the work piece has been an 

issue of primary concern to the manufacturing industry. 
From the various factors that affect the product quality, 
tool wear is the most important one. Drilling is one of 
the conventional material removal processes which 
almost cover 40% of all machining processes. Drill 
wear is categorized as flank wear, chisel wear, corner 
wear and crater wear. Flank wear is the most important 
of all. Drill wear has a negative effect on the surface 
finish and dimensional accuracy of the work piece. 
Generally thrust force and torque are developed in the 
operations which try to unclamp the job and create 
vibrations. As the flank wear increases, for the same set 
of speed and feed the forces will increase which is not 
desired at all. For long these cutting parameters which 
give minimum flank wear with minimum thrust force 
and torque are decided by experience and the optimum 
parameters could not be guaranteed and taken for 
granted. Now-a-days software packages have come out 
for help. 

Researchers have tried implementing software and 
found out outstanding results and the literature is quite 
rich. Thrust force and torque were established as a 
function of material hardness, average flank wear and 
feed rate by Cook et.al [1]. Jalai et.al [2] observed that 
when machining the last hole, the thrust force and 
torque are 50% larger than while machining the first 

hole. These results show that both thrust force and 
torque increases as the drill wear increases. Lin and 
Ting [3] studied the effect of drill wear as well as other 
cutting parameters on current force signals and 
established the relationship between the force signals 
and drill wear with other cutting parameters. Lianyu 
Fua et.al [4] used input impedance to predict the drill 
breakages in micro drilling promptly and accurately by 
recognising the wave form. Neural networks and fuzzy 
sets have been used for the prediction of surface finish 
and tool life while optimisation for various goals is 
carried out using real coded GA by D.K. Ojha et.al [5] 
in a turning operation. 

A neuro-fuzzy model was developed by S.S.Roy[6] 
for a drilling operation which can produce optimal 
knowledge base of fuzzy system for predicting tool life, 
torque and thrust force in drilling operation. In a work 
by P. Bhattacharyya et.al [7] combinations of signal 
processing techniques for real-time estimation of tool 
wear in face milling using cutting force signals are 
presented. Optimization techniques of GA like Multi-
objective genetic algorithm (MOGA) is applied for 
reactive power optimization by P.Aruna Jeyanthy[8] 
effectively. 

In latest researches in this field S.N.Joshi et.al [9] 
integrated finite element method (FEM) with neural 
networks and GA to optimize the process parameters in 
a electric discharge machining (EDM). B.Latha et.al 
[10] used multi-objective optimization of genetic 
algorithm with neural networks to optimise the process 
parameters of a composite drilling. All these research 
activities are done in sophisticated computer numerical 
controlled (CNC) machines.   

 II.  SCOPE  
The present work focuses on a multi-response 

optimization model of drilling on the traditional 
machines as well as on sophisticated machines where 
generally job shop type or batch type production takes 
place. Here an offline procedure of drill wear 
monitoring is adopted where the method is based on 
acquisition of process variables and establishing a 
relationship between tool wear and process variables 
instead of an online method which will be an expensive 
deal for above mentioned type of production units.  The 
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input parameters like cutting speed and feed influences 
most to the flank wear along with the thrust force and 
torque keeping other cutting conditions constant. For 
minimizing the flank wear with thrust force and torque 
simultaneously by GA, a function or equation is needed 
which describes a relationship between the input 
variables and the responses. Here we select the Back 
propagation artificial neural network model to work as 
the objective function for GA. Thus an integrated 
approach is formed to model the process and optimise 
the cutting parameters.  

III.  EXPERIMENTATION 
A.  Experimental Setup, Materials and Test Conditions 

The experiment was carried out on a Batliboi 
BVR-5 radial drilling machine. The work piece material 
was a mild steel plate and the drill depth was 
maintained at 30 mm for each experimental run. The 
drill bit used was a HSS twist drill of 10 mm diameter. 
The mechanical properties of the work piece and the 
chemical composition of the twist drill are given on the 
table I and table II respectively. A Kistler 9272 drill 
tool dynamometer was used to have the readings of the 
thrust force and torque developed. Flank wear of the 
drill was measured using a Mitutoyo Tool Makers 
Microscope TM-500. The schematic diagram of the 
experimental arrangement is shown in Fig. 1. 

 

TABLE I. MECHANICAL PROPERTIES FOR 
MILD STEEL 

Ultimate 
Tensile Stress 

(MN/m2) 

Yield Stress 
(MN/m2) 

Density 
(Kg/m3) 

Elongation 
(%) 

Hardness 
(VHN) 

300 170 7850 42 140 

TABLE II .CHEMICAL COMPOSITION FOR HSS 
(% WEIGHT) 

W Cr V Co Mo C Hardness 
(BHN) 

18 4.3 1.1 5 0.65 0.75 290 

To acquire data for various cutting speeds and 
feeds also considering the availability of spindle speeds 
in the radial drill BVR5, spindle rotations were selected 
as 250, 355, 500, 710, 1000 and 1400 rpm for a 10mm 
drill, and feed rate were selected as 0.10, 0.15, 0.34, 
0.50 and 0.70 mm/rev. The other parameters that affect 
flank wear, including tool hardness, tool geometry, 
work piece hardness, temperature and rigidity of 
machine tool were assumed as constant in the different 
set of test and the number of holes ranged from 1 to 30. 
The maximum flank wear is used as the criterion to 
characterize the drill condition, and is obtained by 
measuring the wear at different points on either of 
cutting edges.  

B.  Pre-Processing the Data 
As there is a considerable variation in the input 

data range in terms of numerical value, it will be 
convenient to bring the data to a uniform scale for input 
to any soft computing methods and this is been 
achieved by normalising, using (1) for a range varying 
from 0.1 to 0.9. 

 

  (1) 
Where, x = actual value, 

xmax= maximum value of x, 
xmin= minimum value of x, 

y= normalized value corresponding to x. 
The normalised value of data selected for training 

and validation are tabulated on table III.  

IV.  MODELING NEURAL NETWORK 
Artificial neural network is an accepted tool for 

predicting the output when the input and output are not 
related linearly or relations are complex. An ANN may 
be seen as a black box which contains hierarchical sets 
of neurons (e.g., processing elements) producing 
outputs for certain inputs. Each processing element 
consists of data collection, processing the data and 
sending the results to the relevant consequent element. 
The whole process may be viewed in terms of the 
inputs, weights, the summation function, and the 
activation function.  

The training and test data have been prepared using 
experimental patterns. In this study, we have 30 
patterns obtained from the experiments. Among them, 
16 patterns have been selected by considering two 
factors and four levels in the Design of Experiments 
(DOE) and used as the training data and rest are divided 
equally and randomly as validation and testing data. 

 
Figugre 1 Schematic view of the experimental 

setup. 
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Selection of transfer function and learning function 

along with the number of hidden neurons affects the 
quality of prediction. As there are two input variables 
namely spindle speed and feed there will be two 
neurons in the input layer so also to predict three output 
variables namely flank wear, thrust force and torque the 
output layer will consist three neurons. 

 For selecting the best size of the hidden layer, a 
code was developed in Matlab-R2010b with normalised 
inputs and outputs considering minimum Mean Squared 
Error (MSE) criteria for a set of hidden neuron 
numbers. The performances of network i.e. MSE is 

plotted against number of neurons in a graph shown in    
Fig. 2. 

It is clear from the graph that the network having 
26 neurons in the hidden layer [2-26-3] is having 
minimum MSE. So the network [2-26-3] is selected for 
further analysis. From the different transfer functions, 
‘logsig’ and ‘purelin’ is selected for transfer function to 
the hidden and output layer respectively whereas 
‘trainlm’ is selected as training function by trial and 
error method. The schematic view of the developed 
network is shown in Fig. 3. The simulation results of 
the test data are tabulated in table IV. 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE III. TRAINING AND VALIDATION DATASET 

Real data Normalized data 

D
at

a 
G

ro
up

 
Ex

pe
rim

en
t 

N
o.

 

Spindle 
speed (rpm) 

Feed 
(mm/rev) 

Flank 
wear 
(mm) 

Thrust 
force (N) 

Torque 
(N-m) 

Spindle 
speed Feed Flank 

wear 
Thrust 
force Torque 

1 250 0.1 0.14 3800 62.7 0.1 0.1 0.1 0.614 0.543 
2 250 0.34 0.19 4105 74.5 0.1 0.42 0.35 0.728 0.811 
3 250 0.5 0.2 4150 75.8 0.1 0.633 0.4 0.745 0.841 
4 250 0.7 0.21 4275 78.4 0.1 0.9 0.45 0.792 0.9 
5 500 0.1 0.2 3570 62 0.274 0.1 0.4 0.528 0.528 
6 500 0.34 0.24 4012 69.7 0.274 0.42 0.6 0.694 0.702 
7 500 0.5 0.25 4315 70.3 0.274 0.633 0.65 0.807 0.716 
8 500 0.7 0.3 4564 75.1 0.274 0.9 0.9 0.9 0.825 
9 1000 0.1 0.15 2425 43.21 0.622 0.1 0.15 0.1 0.1 
10 1000 0.34 0.16 3048 47.7 0.622 0.42 0.2 0.33 0.202 
11 1000 0.5 0.18 3547 51.32 0.622 0.633 0.3 0.520 0.284 
12 1000 0.7 0.18 4021 56.24 0.622 0.9 0.3 0.697 0.396 
13 1400 0.1 0.14 2523 47.72 0.9 0.1 0.1 0.137 0.203 
14 1400 0.34 0.16 2773 45.51 0.9 0.42 0.2 0.23 0.152 
15 1400 0.5 0.16 2813 47.24 0.9 0.633 0.2 0.245 0.192 

Tr
ai

ni
ng

 

16 1400 0.7 0.2 2915 48.11 0.9 0.9 0.4 0.283 0.211 
17 355 0.1 0.14 4075 63.75 0.173 0.1 0.1 0.717 0.567 
18 355 0.15 0.18 4105 65.76 0.173 0.167 0.3 0.728 0.613 
19 355 0.34 0.18 4172 69.21 0.173 0.42 0.3 0.753 0.691 
20 710 0.1 0.18 3154 54.65 0.42 0.1  0.3 0.373 0.360 
21 710 0.15 0.19 3290 60.62 0.42 0.167 0.35 0.424 0.496 
22 710 0.34 0.2 3695 64.12 0.42 0.42 0.4 0.575 0.575 

V
al

id
at

io
n 

23 1400 0.15 0.14 2615 44.81 0.9 0.167 0.1 0.171 0.136 
 

 
Figure 3. View of Neural Network used. 

 
Figure 2. Variation of Mean Squared Error with 

ANN Architecture. 
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V.  OPTIMIZATION USING GENETIC 
ALGORITHM 

For optimising i.e. minimising the three output 
responses (flank wear, thrust force and torque), a multi-
objective genetic algorithm (MOGA) is applied using 
MatlabR2010b which uses a controlled Elitist Genetic 
Algorithm (GA) which is a variant of NSGA-II [11]. 
An elitist GA always favours individuals with better 
fitness value (rank). Two options, ‘Pareto Fraction’ and 
‘Distance Function’ control the elitism. The other 
critical factors in GA are number of generations and 
population size. The best suitable values of the Pareto 
fraction, number of generation and population size 
could be found as 0.2 (Fig. 4), 50(Fig. 5) and 95 (Fig. 
6) respectively. The criteria for selecting these sizes are 
the minimum average response which is calculated in 
fashion mentioned below: 

Let, output of GA= F,  
Where,  ‘F’ is a matrix of size [n×3], 

‘n’ is the number solutions in each output, 
 and, ‘3’ is the number of output responses. 

     
If, F = 
 
 
Where,  P is the flank wear in normalised scale, 

 Q is the thrust force in normalised scale, 
 R is the torque in normalised scale. 

Now the minimum average response (AR) could be 
represented as (2). 

 (2) 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
After deciding the above factors, the genetic 

algorithm was simulated using the two type of distance 
measure function named as ‘distance crowding - 
genotype’ and ‘distance crowding - phenotype’. The 
optimized results thus obtained are tabulated in table V. 
The other factors were kept at their default values as 
available with the GA tool box in MatlabR2010b. 

VI.  RESULTS AND DISCUSSION 
A.  Performance of the Artificial Neural Network Model 

The result of the neural network tabulated in the 
table IV is quite satisfactory and acceptable as 
compared to the experimental data except few noisy 
data. The variations of those results may be due to 
insufficient number of training data which in this case 
is being restricted due to a traditional machine. The 
performance graph of the network in terms of MSE 
during training, validation and testing is shown in Fig. 
7. 

 

 
Figure 4. Variation of Minimum Average Response 

with Pareto Fraction. 

TABLE IV. NORMALIZED TESTING DATASET 

Flank wear by Thrust force by Torque by 
Experiment No. Spindle 

Speed Feed 
Experiment Prediction Experiment Prediction Experiment Prediction 

24 0.1 0.167 0.2 0.1544 0.657 0.6416 0.652 0.6728 
25 0.173 0.633 0.5 0.5387 0.760 0.7996 0.758 0.8085 
26 0.173 0.9 0.6 0.6361 0.785 0.8213 0.807 0.8634 
27 0.274 0.167 0.4 0.3397 0.543 0.5344 0.580 0.5348 
28 0.420 0.633 0.4 0.5064 0.650 0.7294 0.634 0.5604 
29 0.420 0.9 0.5 0.73 0.737 0.8643 0.669 0.7213 
30 0.622 0.167 0.2 0.2198 0.195 0.2172 0.125 0.1985 
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B.  Performance of the Multi-Objective Genetic 

Algorithm 
The GA converges to its best suitable minimum 

value of average response in the selected generation. 
The minimum value of the response parameters and the 
respective input parameters are given in table V for 
both the distance measure functions. It is observed that 
both results are equally acceptable and matches to our 

experimental data as in experiment number 13 as in 
table III.  

 
VII. CONCLUSION 

The recent work elaborates briefly the modeling of 
an offline drilling process for minimizing flank wear, 
thrust force and torque simultaneously and also 
predicting the same via neural networks for a particular 
kind of material with a particular type of drill bit and 
drill size. The network architecture and the parameters 
are selected carefully by choosing the minimum MSE 
and in case of GA by minimizing the average 
responses. The results closely match the experimental 
data so it can be used for prediction and optimization of 
the process parameters. By prediction we are able to 
change the tool as it reaches 0.3 mm flank wear [12] 
which is the standard for replacing the tool or can 
continue drilling in case of similar cutting conditions as 
in this experiment. 

The model can be in a more generalised format if 
more input variables like drill size, type of material by 
hardness etc could be given and for GA the other 
default parameters are changed.   
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