

A LAN protocol for efficient file transfer on Linux based system

Ajit Ambekar1, Pravin Dilpak2, Pravinkumar Malviya3 and Sameer Mahant4

V.J.T.I /Computer Technology,Mumbai, India.
1Email: ajitsa_bes@yahoo.com 2Email: pravindilpak@rediff.com .

3Email: malviyapravin2010@gmail.com 4Email: shm.mtech@gmail.com

Abstract— Data sharing has always been an cruicial
task over a LAN. Considering the existing TCP/IP
model only network and transport layers are of
immense importance. As we know that, TCP defines
the actual port numbers on which connections are
made by the applications and of course, the local IP
address of a machine, it stands as a candidate for
data communication between applications over the
internet and also in a LAN .On the other hand
Internet protocol (IP) just takes care to deliver the
packets to its destination. In this paper we are
proposing a scheme to bypass the IP in a LAN
environment.

Index Terms— LAN, protocol, efficient, file transfer.

I. INTRODUCTION
Gigabyte Ethernet has become a well known

standard used for data transfer or communication. Lot
of researches are being carried out to match the make as
much use as of the capability of the Ethernet to transmit
data. With the technical advance of link transmission
and ASIC hardware processing the mature commercial
Ethernet link interface speed has developed from 1G b/s
to 10G b/s, laboratory 100G b/s Ethernet interface
transmission technique has been thoroughly
investigated [1].

In this paper we propose the design, of a new
connection-oriented transport level protocol, which
was designed specifically for local area networks
(LANs). Our idea is to bypass the Network layer for a
LAN (LAN is supposed to be within the limits such that
no router comes in the scenario.) This will reduce the
overhead of IP Encapsulation and decapsulation which
will also result in less CPU utilization and faster
transmission of data. The study is divided into two parts
one of which is the Address resolution and the second is
the design approach of the protocol.

II. BACKGROUND
As we know Internet is a public network which is a

collection on private networks all over the world. These
private networks belongs to enterprises, large
institutions etc. So we can say that not only Internet but
LAN is a widely used feature throughout the world for
file sharing and data transfer. Hence we focus on LAN
, so as to improve the performance on the basis that the
data is to be transferred to a host within a LAN.

Address resolution
ARP protocol is required for actual communication

between the network nodes at the physical layer. In
prevailing ARP implementations, traditional methods
of sending ARP query for each of required sending
frame is rarely used; instead, they usually use ARP
cache table (short for ARP table in the following)
to store part of <MAC address, IP address>
corresponding pairs so as to reduce overhead time
for at least RTT each time. When failing to find
an associated ARP entry, it would perform normal
ARP query/reply procedure. However, the aim of
dynamically updating and linear lookup of ARP
table in high speed puts forward high requirements
to system design [2].

The main issue Ethernet faces when forwarding
packets is what to do when the entries are not found in
the ARP cache table. Hence there should be a
mechanism which takes care that the entries are present
in the table and also the resolved Physical address has
not been changed. Some implementations overcome
this problem by adding an entry AGE in the ARP table
which is basically a decrement counter. It defines the
time limit for which the AGE entry in valid after which
the entry must be marked as invalid and if required an
lookup has to be done again just to confirm that there is
no change in the Physical address.

In our scenario since we are working on a pure
Local Area Network where no routing is required as the
numbers of nodes in the network are going to be the
same (depending upon the class of the IP address used).
Hence as Routing is avoided the need to update the
ARP table as fast as that of the earlier case become less,
we have the option for static ARP table but because
some physical damages may cause the machines to be
replaced it isn’t a good idea. So lets continue with
dynamic ARP for our protocol.

The only extension to the ARP methodology
carried out by the OS would be to increase the expiry
time for every local entry in the ARP table; so as to
avoid unnecessary congestion with ARP reply and
request packets over the network.

III. PROTOCOL DESIGN
We will explain this part in two difference sections.

The first section will contain a view about how the

International Journal of Technology And Engineering System(IJTES):
Jan – March 2011- Vol 2.No1.

5 gopalax Publications

protocol would actually work as compared to the
TCP/IP stack and the second part would define the
design specification that would be taken into
consideration.

A. Comparison with TCP/IP stack
The diagram below show the traditional TCP/IP

protocol model alongside which we have a basic
diagram which depicts where our protocol would be
placed.

Figure 1 : Comparison with TCP/IP stack

In Fig. 1 we can see how the Transport layer and
the Network layer should be mergred together. The
important fact to keep in mind is, this advancement will
work only at the OS level.

B. Design Principles
The primary design philosophy of our protocol is

efficiency. Thus, it would not include any protocol
features which are not strictly relevant to a LAN
environment. Also, those functions which are only
rarely needed, especially if they can be achieved by
the application program, are excluded.

Another design approach is to exploit the
properties of the underlying network and the
application environment as much as possible. Some
of the main features of our protocol are given below.

i. Unsupported Features
Our protocol would make no provision for

routing, packet fragmentation/reassembly, packet
self-destruction, or service options. These
functions are typically irrelevant to a LAN

environment and are thus unnecessary. Because of
the much higher bandwidth, congestion is less of
a problem in LAN’s and not considered by us.
There would be, however, a flow control
mechanism which should indirectly help to
alleviate any congestion problem[3].

ii. Error Control
The simplest error control scheme for our

proposal would be retransmission of packets. The
main purpose of error control in a LAN
environment is to handle packet loss due to
buffer overflows. With respect to the philosophy of
simplicity, for our protocol, a go back n strategy
seems to be a better option. Since the bit error rate
in a LAN is extremely low, of the order of 1 in
1011 to 1012 [CLAR78 and COTTSO], more than
likely errors are a result of buffer overflow
rather than due to a lost or damaged packet.
Also, since once a buffer overflows it is quite
likely that more than one packet will have to be
rejected and resent, the go back n strategy
represents an uncomplicated scheme which does
not result in an undue loss of throughput.

iii .Checksum
Check summing is specified as an option as

the possibility exists that the network interface
performs this function in hardware.

iv. Addressing
The addressing would be kept as it is, so as to

enable the machine interact with the outside
networks with the same logical address. Deploying
a separate address may lead to an extra overhead.

IV. IMPLEMENTATION OVERVIEW
Raw Ethernet Frames are the one which are going

to serve our purpose. An raw Ethernet frame can be
injected into the network by bypassing the Linux
kernel.

Figure 2 : An Ethernet Frame

The Fig 2 shows a Ethernet frame. As we know
that the “user data” part consisting of 46-1500 Bytes, is

gopalax Publications 6

basically, IP over TCP/UDP. Hence the fact that a
minimum of 40 Bytes, excluding the options, in the
higher level protocols are consumed.

Our Idea is to bypass the upper protocols whenever
data is to be shared in a LAN. We are mainly
concentrating on the Physical address of a machine.
The type filed in the above diagram is considered as a
Length filed is the values lies between 0000-05DC. If
we design a preamble for our frames to be recognized it
would result in a very efficient procedure to transfer
files in a LAN. For the following reasons,

1) The amount of data carried in the Raw
Ethernet frames will be more as compared to
the existing Frames which pass through the OS
protocol stack.

2) The amount of overhead will be reduced on
both the machines to encapsulate and then
encapsulate the packets.

3) The processing rate will be increased as an
result of less number of headers.

The new protocol would have an header which
combines the features of TCP/IP (excluding the feature
mentioned above) and would ultimately result in the
reduction of the header size.

V. CONCLUSIONS
Hence we conclude that Raw Ethernet frames can

be used for efficient file transfer in a LAN and we look
forward to implement the same.

VI. REFERENCES
[1] J.S. Turner, Terabit Burst Switching, Journal of High

Speed Networks, 1999.
[2] Yun Qin, A High Performance ARP Lookup System for

Gigabit Ethernet.
[3] Samuel T. Chanson,The Design And Tuning Of A

Transport Protocol For Local Area Networks

7 gopalax Publications

