
International Journal of Computer Communication and Information System (IJCCIS)
– Vol2. No1. ISSN: 0976–1349 July – Dec 2010

Method Level Detection and Removal of Code Clones in C and Java
Programs using Refactoring

1Mrs. E.Kodhai , 2V.Vijayakumar, 3G. Balabaskaran, 4T.Stalin, 5B.Kanagaraj
 1Sri Manakula Vinayagar Engineering College,Department of Information Technology, Puducherry, India

Email: baas.1989@gmail.com
2,3,4,5Sri Manakula Vinayagar Engineering College,Department of Information Technology, Puducherry, India

Email: Viji_kum_truth@yahoo.com, kodhaiej@yahoo.co.in, stalin_waiting4u@yahoo.com

Abstract - Clone detection and refactoring is the
major role in software maintenance and evaluation.
A well-known bad code smell in refactoring and
software maintenances is duplicated code, or code
clones. A code clone is a code fragment that is
identical or similar to another. Unjustified code
clones increase code size, make maintenance and
comprehension more difficult, and also indicate
design problems such as lack of encapsulation or
abstraction. This paper proposes to automatically
detecting code clones in c/java programs, underlying
a collection of refactoring to support user-controlled
automatic clone removal, and examines their
application in substantial case studies. Both the
clone detector and the refactoring will be done using
new refactoring methods.

Index terms - Detection, Refactoring, Duplicated
code

1. INTRODUCTION

The software comprises both programs and data.
The paper mainly contributes on the process of software
evolution and maintenance. In software engineering the
software maintenance is the delivery to correct faults to
improve performance or other attributes adapts the
product to a modified environment. Software evolution
is the process which refers to the process of developing
software initially and then repeatedly updating it for
various reasons.

Code clones
A code clone is a pair (or set) of code fragments in

source files of a software product.

Clone detection

Common terminologies for the clone relations
between two or more code fragments are the phrases
clone pair and clone class. A clone pair is a pair of code
fragments which are identical or similar to each other; a
clone class is the maximal set of code fragments in
which any two of the code fragments form a clone pair.
In this paper, we distinguish the following four types of
clones. All these four types of clones ignore variations
in literals, layout and comments.

Type 1: Identical code fragments.

Type 2: Code fragments that are identical after
consistent (i.e. semantic-preserving) renaming of
variable names.

 Type 3: Code fragments that are identical after
renaming all variable names to the same name.

Type 4: Code fragments that are identical after
renaming all function names and variable names to the
same name, respectively

Obviously, these four types of clones satisfy a
subset relation, i.e. clones of Type i(i=1;2;3) form a
subset of clones of Type (i+1).Among the four types of
clones, Type 1 and Type 2 represent the clones that are
most suitable for automatic clone removal because of
the semantic equivalence between cloned code
fragments, and they are also the kinds of clones that are
reported by the Wrangler clone detector. Type 3 and
Type 4 clones are not suitable for mechanical removal,
but they somehow reveal structure-level duplication,
and are obtainable from the intermediate results of the
Wrangler clone detector.

2. REFACTORING

Refactoring is the process of changing the structure
of a program while maintaining all of its functionality.
There are many types of refactoring that you can do
such as renaming a class, changing a method signature,

93

International Journal of Computer Communication and Information System (IJCCIS)
– Vol2. No1. ISSN: 0976–1349 July – Dec 2010

or extracting some code into a method. With each
refactoring, you carry out a number of steps that keep
your code consistent with the original code.

Why Refactoring is Important

When refactoring by hand, it is easy to introduce
errors into your code such as spelling mistakes or
missing a step in the refactoring. To prevent and
quickly fix these errors, thorough testing should be
performed before and after each refactor. You may
wonder if refactoring is worth going through all this.

There are several reasons why refactoring should
be used. You may want to update a program that is
poorly coded. Perhaps none of the original design team
is present and no one on the current design team
understands the code. In order to update it, you will
have to redesign and restructure the program to fit what
you want it to do. Another reason is that you may want
to add a feature that the original design cannot
accommodate. In order to add it, you will have to
restructure the code. The third reason is that an
automatic refactoring tool, such as the refactoring in
Eclipse, can generate code for you.

By using refactoring, you can easily change the
structure of a program to what makes logical sense
while rewriting code as little as possible and still
keeping its functionality. If refactoring is used on a
regular basis to constantly keep a good structure, less
time will be needed to fix any bugs and it will be easy
to add new code to the design.

Types of Refactoring

The first type contains refactoring that change the
physical structure of the code and classes such as
Rename and Move. The second type contains
refactoring that change the code structure on a class
level such as Pull Up and Push Down. The third type
contains refactoring that change the code within a class
such as Extract Method and Encapsulate Field. The
sections and their refactoring are shown below.

Type 1 – Physical Structure

• Rename

• Move

• Change Method Signature

• Convert Anonymous Class to Nested

• Convert Nested Type to Top Level (Eclipse 2 only)

• Move Member Type to New File (Eclipse 3 only)

Type 2 – Class Level Structure

• Push Down

• Pull Up

• Extract Interface

• Generalize Type (Eclipse 3 only)

• User Supertype Where Possible

Type 3 – Structure inside a Class

• Inline

• Extract Method

• Extract Local Variable

• Extract Constant

• Introduce Parameter (Eclipse 3 only)

• Introduce Factory (Eclipse 3 only)

• Encapsulate Field

3. APPROACH

Detecting Functions

For detecting functions in the source file the
following information is need. They are beginning and
end of the body, beginning of the declaration. The two
important things which is necessary to calculate the
similarity between the functions are as follows,

• Compare function signatures

• Name of the function

The generation of the name of the function is
impossible because the conditional compilation may
change the location of a function depending on
compile-time switches.

The first approach in this paper is to detect the
possible clones in the source file and preserve it for
future use. For detecting the clones first have to detect
all the possible functions by using the necessary
functions. For detecting the functions the transform
code is converted into the preprocessed form. After that
organize the code and extract that organized code. After
extracting the code the code is split led into the number
of tokens for comparing and detecting the similarity.

94

International Journal of Computer Communication and Information System (IJCCIS)
– Vol2. No1. ISSN: 0976–1349 July – Dec 2010

CLONE ELIMINATION

After detecting functions or method in c/java
programs, to evaluate clone elimination by means of
refactoring, we underwent the process of removing the
clones.

In this system, we are taking the methods.

The methods are:

 Rename method.

 Add parameter.

 Replace constructor with factory
methods.

 Replace parameter with explicit
methods.

 Remove setting method.
The main approach in this paper into detect the possible
clones and removing the clones using refactoring
methods which is not supporting for existing systems.

4. CONCLUSION

In this paper, we have presented clone detection
which makes use of detecting the clones to improve
performance and efficiency, and a collection of
refactoring which together help to remove clones from
code under the user’s control. In main approach in our
system is both the detection and removal are done in the
C and JAVA language programming.

ACKNOWLEDGEMENT

The authors would like to thanks Mr. Martin
Fowler and Kent Beck(Refactoring: Improving the
Design of Existing code) and Simon Thompson
(Computing Laboratory, University of Kent) for their
support.

REFERENCES
[1] Huiqing Li, Simon Thompson, Clone Detection and Removal

for Erlang/OTP within a Refactoring Environment, PEPM’09,
January 19–20, 2009, Savannah, Georgia, USA.

[2] Martin Fowler, Kent Beck (Contributor), John Brant
(Contributor), William Opdyke, don Roberts, Refactoring:
Improving the Design of Existing Code, Addison-Wesley
Longman Publishing Co., Inc., Boston, MA,USA, 1999. ISBN0-
201-48567-2.

[3] H. Roy and R. Cordy. A Survey of Software Clone Detection
Research.Technical report, School of Computing, Queen’s
UniversityatKingston,Ontario, Candada, 2007.

[4] Eytan Adar. GUESS: a language and interface for graph
exploration. In Proceedings of the 2006 Conference on Human
Factors in Computing Systems (CHI'06), pp. 791-800, Montreal,
Quebec, Canada, April 2006. (PDF)Eytan Adar and Miryung
Kim. SoftGUESS: Visualization and Exploration of Code

[5] Clones in Context. In the proceedings of the 29th International
Conference on Software Engineering (ICSE'07), Tool Demo,
pp.762-766, Minneapolis, MN, USA, May 2007 .

[6] R. Agrawal and R. Srikant. Mining Sequencial Patterns. In
Proceddings of the 11th In-fernation Conference of Data
Engineering (ICDE'95), pp. 3-14, Taipei, Taiwan, March 1995.

95

